Skip to main content Accessibility help

Characters of inductive limits of finite alternating groups



If $G\ncong \operatorname{Alt}(\mathbb{N})$ is an inductive limit of finite alternating groups, then the indecomposable characters of $G$ are precisely the associated characters of the ergodic invariant random subgroups of $G$ .



Hide All
[1] Abért, M., Glasner, Y. and Virag, B.. Kesten’s theorem for invariant random subgroups. Duke Math. J. 163 (2014), 465488.
[2] Choksi, J. R.. Inverse limits of measure spaces. Proc. Lond. Math. Soc. (3) 8 (1958), 321342.
[3] Conley, C., Kechris, A. S. and Tucker-Drob, R.. Ultraproducts of measure preserving actions and graph combinatorics. Ergod. Th. & Dynam. Sys. 33 (2013), 334374.
[4] Creutz, D. and Peterson, J.. Stabilizers of ergodic actions of lattices and commensurators. Trans. Amer. Math. Soc. 369 (2017), 41194166.
[5] Hall, J. I.. Infinite alternating groups as finitary linear transformation groups. J. Algebra 119 (1988), 337359.
[6] Leinen, F. and Puglisi, O.. Diagonal limits of finite alternating groups: confined subgroups, ideals, and positive definite functions. Illinois J. Math. 47 (2003), 345360.
[7] Leinen, F. and Puglisi, O.. Positive definite functions of diagonal limits of finite alternating groups. J. Lond. Math. Soc. (2) 70 (2004), 678690.
[8] Lindenstrauss, E.. Pointwise theorems for amenable groups. Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 8290.
[9] Loeb, P. A.. Conversion from nonstandard to standard measure spaces and applications in probability theory. Trans. Amer. Math. Soc. 211 (1975), 113122.
[10] Peterson, J. and Thom, A.. Character rigidity for special linear groups. J. Reine Angew. Math. 716 (2016), 207228.
[11] Roichman, Y.. Upper bound on the characters of the symmetric groups. Invent. Math. 125 (1996), 451485.
[12] Sagan, B. E.. The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions (Graduate Texts in Mathematics, 203) . Springer, New York, 2001.
[13] Thoma, E.. Über unitäre Darstellungen abzählbarer, diskreter Gruppen. Math. Ann. 153 (1964), 111138.
[14] Thoma, E.. Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe. Math. Z. 85 (1964), 4061.
[15] Thomas, S. and Tucker-Drob, R.. Invariant random subgroups of inductive limits of finite alternating groups. J. Algebra 503 (2018), 474533.
[16] Vershik, A. M.. Nonfree actions of countable groups and their characters. J. Math. Sci. (N.Y.) 174 (2011), 16.
[17] Vershik, A. M.. Totally nonfree actions and the infinite symmetric group. Mosc. Math. J. 12 (2012), 193212.
[18] Vershik, A. M. and Kerov, S. V.. Locally semisimple algebras. Combinatorial theory and the K-functor. J. Sov. Math. 38 (1987), 17011733.
[19] Zalesskii, A. E.. Group rings of inductive limits of alternating groups. Leningrad Math. J. 2 (1991), 12871303.


MSC classification

Characters of inductive limits of finite alternating groups



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed