Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-17T23:04:45.738Z Has data issue: false hasContentIssue false

Category theorems for stable semigroups

Published online by Cambridge University Press:  01 April 2009

TANJA EISNER
Affiliation:
Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076, Tübingen, Germany (email: talo@fa.uni-tuebingen.de)
ANDRÁS SERÉNY
Affiliation:
Department of Mathematics and its Applications, Central European University, Nádor utca 9, H-1051 Budapest, Hungary (email: sandris@elte.hu)

Abstract

Inspired by the classical category theorems of Halmos and Rohlin for discrete measure-preserving transformations, we prove analogous results in the abstract setting of unitary and isometric C0-semigroups on a separable Hilbert space. More precisely, we show that, for an appropriate topology, the set of all weakly stable unitary groups (isometric semigroups) is of first category, while the set of all almost weakly stable unitary groups (isometric semigroups) is residual.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bartoszek, W. and Kuna, B.. Strong mixing Markov semigroups on C 1 are meager. Colloq. Math. 105 (2006), 311317.CrossRefGoogle Scholar
[2]Cornfeld, I. P., Fomin, S. V. and Sinai, Ya. G.. Ergodic Theory (Grundlehren der mathematischen Wissenschaften, 245). Springer, Berlin, 1982.CrossRefGoogle Scholar
[3]de Leeuw, K. and Glicksberg, I.. Applications of almost periodic compactifications. Acta Math. 105 (1961), 6397.CrossRefGoogle Scholar
[4]Eisner, T., Farkas, B., Nagel, R. and Serény, A.. Weakly and almost weakly stable C 0-semigroups. Int. J. Dyn. Syst. Differ. Equ. 1 (2007), 4457.Google Scholar
[5]Eisner, T. and Serény, A.. Category theorems for stable operators on Hilbert spaces. Acta Sci. Math. (Szeged) 74 (2008), 259270.Google Scholar
[6]Eisner, T. and Serény, A.. On a weak analogue of the Trotter–Kato Theorem, submitted, 2007.Google Scholar
[7]Engel, K.-J. and Nagel, R.. One-parameter Semigroups for Linear Evolution Equations (Graduate Texts in Mathematics, 194). Springer, New York, 2000.Google Scholar
[8]Halmos, P. R.. In general a measure preserving transformation is mixing. Ann. of Math. (2) 45 (1944), 786792.CrossRefGoogle Scholar
[9]Halmos, P. R.. Lectures on Ergodic Theory. Chelsea Publishing Co., New York, 1956.Google Scholar
[10]Halmos, P. R.. What does the spectral theorem say? Amer. Math. Monthly 70 (1963), 241247.CrossRefGoogle Scholar
[11]Hiai, F.. Weakly mixing properties of semigroups of linear operators. Kodai Math. J. 1 (1978), 376393.CrossRefGoogle Scholar
[12]Jones, L. and Lin, M.. Ergodic theorems of weak mixing type. Proc. Amer. Math. Soc. 57 (1976), 5052.CrossRefGoogle Scholar
[13]Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems (Encyclopedia of Mathematics and its Applications, 54). Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
[14]Lasota, A. and Myjak, J.. Generic properties of stochastic semigroups. Bull. Pol. Acad. Sci. Math. 40 (1992), 283292.Google Scholar
[15]Nagel, R.. Ergodic and mixing properties of linear operators. Spectral Theory Symposium (Trinity College, Dubin, 1974), Proc. Roy. Irish Acad. Sect. A 74 (1974), 245261.Google Scholar
[16]Peller, V. V.. Estimates of operator polynomials in the space L p with respect to the multiplicative norm. J. Math. Sci. 16 (1981), 11391149.CrossRefGoogle Scholar
[17]Petersen, K.. Ergodic Theory (Cambridge Studies in Advanced Mathematics). Cambridge University Press, Cambridge, 1983.CrossRefGoogle Scholar
[18]Rohlin, V. A.. A general measure-preserving transformation is not mixing. Dokl. Akad. Nauk SSSR 60 (1948), 349351.Google Scholar
[19]-Nagy, B. Sz. and Foiaş, C.. Harmonic Analysis of Operators on Hilbert Space. North-Holland, Akadémiai Kiadó, Amsterdam, Budapest, 1970.Google Scholar
[20]Takesaki, M.. Theory of Operator Algebras I. Springer, Berlin, 1979.CrossRefGoogle Scholar