Skip to main content Accessibility help
×
Home

Asymptotic pairs in positive-entropy systems

  • F. BLANCHARD (a1), B. HOST (a2) and S. RUETTE (a1)

Abstract

We show that in a topological dynamical system (X,T) of positive entropy there exist proper (positively) asymptotic pairs, that is, pairs (x,y) such that x\not= y and \lim_{n\to +\infty} d(T^n x,T^n y)=0. More precisely we consider a T-ergodic measure \mu of positive entropy and prove that the set of points that belong to a proper asymptotic pair is of measure one. When T is invertible, the stable classes (i.e. the equivalence classes for the asymptotic equivalence) are not stable under T^{-1}: for \mu-almost every x there are uncountably many y that are asymptotic to x and such that (x,y) is a Li–Yorke pair with respect to T^{-1}. We also show that asymptotic pairs are dense in the set of topological entropy pairs.

Copyright

Asymptotic pairs in positive-entropy systems

  • F. BLANCHARD (a1), B. HOST (a2) and S. RUETTE (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed