Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T01:41:26.451Z Has data issue: false hasContentIssue false

On the asymptotic range of cocyles for shifts of finite type

Published online by Cambridge University Press:  19 September 2008

Zaqueu Coelho
Affiliation:
Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 20570, São Paulo SP, Brazil

Abstract

We study the problem of lifting ergodicity to certain skew-product extensions over shifts of finite type. This can be done by computing the asymptotic range of the defining cocycle. For a class of ergodic shift-invariant measures and a class of functions (defining conservative extensions) we give a characterization of ergodicity in terms of weights of periodic orbits in the shift space.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[At]Atkinson, G.. Recurrence of cocycles and random walks. J. London Math. Soc. 13 (1976).Google Scholar
[BD]Brown, G. & Dooley, A. H.. Odometer actions on g-measures. Ergod. Th. & Dynam. Sys. 11 (1991), 279307.CrossRefGoogle Scholar
[Bo]Bowen, R.. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Springer Lecture Notes in Mathematics 470. Springer: Berlin, 1975.CrossRefGoogle Scholar
[Co]Coelho, Z.. PhD Thesis. University of Warwick (1990).Google Scholar
[CP]Coelho, Z. & Parry, W.. Central limit asymptotics for shifts of finite type. Israel J. Maths 69 (1990), 235249.CrossRefGoogle Scholar
[De]Dekking, F. M.. On transience and recurrence of generalised random walks. Z. Wahrsch. verw. Gebiete 61 (1982), 459465.CrossRefGoogle Scholar
[FM]Feldman, J. & Moore, C.. Ergodic equivalence relations, cohomology, and von Neumann algebras I. Trans. Amer. Math. Soc. 234 (1977), 289324.CrossRefGoogle Scholar
[Gu]Guivarc'h, Y.. Propriétés ergodiques, en mesure infinie, de certaines systèmes dynamiques fibrés. Ergod. Th. & Dynam. Sys. 9 (1989), 433453.CrossRefGoogle Scholar
[GH]Guivarc'h, Y. & Hardy, J.. Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov. Ann. Poincaré 24 (1988), 7398.Google Scholar
[KR]Krieger, W.. On the finitary isomorphisms of Markov shifts that have finite expected coding time. Z. Wahrsch. verw. Gebiete 65 (1983), 323328.CrossRefGoogle Scholar
[LE]Ledrappier, F.. Principe variationnel et systèmes dynamiques symboliques. Z. Wahrsch. verw. Gebiete 30 (1974), 185202.CrossRefGoogle Scholar
[Li]Livšic, A. N.. Cohomology of dynamical systems. Math. USSR Izv. 6 (1972), 12781301.CrossRefGoogle Scholar
[MS]Moore, C. & Schmidt, K.. Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson. Proc. London Math. Soc. 40 (1980), 443475.CrossRefGoogle Scholar
[PS]Parry, W. & Schmidt, K.. Natural coefficients and invariants for Markov shifts. Invent. Math. 76 (1984), 1532.CrossRefGoogle Scholar
[Re]Rees, M.. Checking ergodicity of some geodesic flows with infinite Gibbs measure. Ergod. Th. & Dynam. Sys. 1 (1981), 107133.CrossRefGoogle Scholar
[Ru]Ruelle, D.. Thermodynamic formalism. Addison-Wesley: Reading, MA, 1978.Google Scholar
[Sc1]Schmidt, K.. Cocycles of Ergodic Transformation Groups. Macmillan: India, 1977.Google Scholar
[Sc2]Schmidt, K.. On recurrence. Z. Wahrsch. verw. Gebiete 68 (1984), 7595.CrossRefGoogle Scholar
[Sc3]Schmidt, K.. Hyperbolic structure preserving isomorphisms of Markov shifts. Israel J. Math. 55 (1986), 213228.CrossRefGoogle Scholar
[Sc4]Schmidt, K.. Hyperbolic structure preserving isomorphisms of Markov shifts II. Israel J. Math. 58 (1987), 225242.CrossRefGoogle Scholar
[Sc5]Schmidt, K.. Algebraic ideas in ergodic theory. CBMS Reg. Conf., Amer. Math. Soc. 76 1990.Google Scholar
[Wa1]Walters, P.. Ruelle's operator theorem and g-measures. Trans. Amer. Math. Soc. 214 (1975), 375387.Google Scholar
[Wa2]Walters, P.. An Introduction to Ergodic Theory. Graduate Texts in Maths 79. Springer: New York, 1982.CrossRefGoogle Scholar