Skip to main content Accessibility help
×
Home

Enumerating combinatorial classes of the complex polynomial vector fields in ℂ

Published online by Cambridge University Press:  20 February 2012


KEALEY DIAS
Affiliation:
Mathematisches Seminar, Christian-Albrechts Universität zu Kiel, Ludewig-Meyn-Str. 4, 24098 Kiel, Germany (email: kealey.dias@gmail.com)
Corresponding
E-mail address:

Abstract

In order to understand the parameter space Ξd of monic and centered complex polynomial vector fields in ℂ of degree d, decomposed by the combinatorial classes of the vector fields, it is interesting to know the number of loci in parameter space consisting of vector fields with the same combinatorial data (corresponding to topological classification with fixed separatrices at infinity). This paper answers questions posed by Adam L. Epstein and Tan Lei about the total number of combinatorial classes and the number of combinatorial classes corresponding to loci of a specific (real) dimension q in parameter space, for fixed degree d; these numbers are denoted by cd and cd,q, respectively. These results are extensions of a result by Douady, Estrada, and Sentenac, which shows that the number of combinatorial classes of the structurally stable complex polynomial vector fields in ℂ of degree d is the Catalan number Cd−1. We show that enumerating the combinatorial classes is equivalent to a so-called bracketing problem. Then we analyze the generating functions and find closed-form expressions for cd and cd,q, and we furthermore make an asymptotic analysis of these sequences for d tending to . These results are also applicable to special classes of quadratic and Abelian differentials and singular holomorphic foliations of the plane.


Type
Research Article
Copyright
©2012 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Andronov, A. A., Leontovich, E. A., Gordon, I. I. and Maier, A. G.. Qualitative Theory of Second-Order Dynamic Systems. Wiley, New York, 1973, Nauka, Moscow, 1967, English translation.Google Scholar
[2]Bender, E. A.. Central and local limit theorems applied to asymptotic enumeration. J. Combin. Theory Ser. A 15 (1973), 91111.CrossRefGoogle Scholar
[3]Branner, B. and Dias, K.. Classification of polynomial vector fields in one complex variable. J. Difference Equ. Appl. 16(5) (2010), 463517.CrossRefGoogle Scholar
[4]Comtet, L.. Advanced Combinatorics. D. Reidel, Dordrecht, Holland, 1974.CrossRefGoogle Scholar
[6]Douady, A., Estrada, F. and Sentenac, P.. Champs de vecteurs polynomiaux sur ℂ, unpublished manuscript.Google Scholar
[7]Flajolet, P. and Noy, M.. Analytic combinatorics of non-crossing configurations. Discrete Math. 204 (1999), 203229.CrossRefGoogle Scholar
[8]Flajolet, P. and Odlyzko, A.. Singularity analysis of generating functions. SIAM J. Discrete Math. 3(2) (1990), 216240.CrossRefGoogle Scholar
[9]Flajolet, P. and Sedgewick, R.. Analytic Combinatorics. Cambridge University Press, 2009.CrossRefGoogle Scholar
[10]Graham, R. L., Knuth, D. E. and Patashnik, O.. Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, Reading, MA, 1994.Google Scholar
[11]Neumann, D.. Classification of continuous flows on 2-manifolds. Proc. Amer. Math. Soc. 48(1) (1975), 7381.CrossRefGoogle Scholar
[12]Salvy, B. and Zimmerman, P.. GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM Trans. Math. Software 20(2) (1994), 163167.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 25 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-87k5x Total loading time: 9.822 Render date: 2020-12-05T10:01:15.756Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Dec 05 2020 10:00:22 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Enumerating combinatorial classes of the complex polynomial vector fields in ℂ
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Enumerating combinatorial classes of the complex polynomial vector fields in ℂ
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Enumerating combinatorial classes of the complex polynomial vector fields in ℂ
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *