[1]
Bergman, G. M.. Ordering coproducts of groups and semigroups. J. Algebra
133(2) (1990), 313–339.

[2]
Bieri, R. and Strebel, R.. On Groups of PL-Homeomorphisms of the Real Line
*(Mathematical Surveys and Monographs, 215)*
. American Mathematical Society, Providence, RI, 2016.

[3]
Bleak, C., Brin, M. G., Kassabov, M., Moore, J. T. and Zaremsky, M. C.B.. Groups of fast homeomorphisms of the interval. J. Combin. Algebra.
3(1) (2019), 1–40.

[4]
Bludov, V. V. and Glass, A. M. W.. On free products of right ordered groups with amalgamated subgroups. Math. Proc. Cambridge Philos. Soc.
146(3) (2009), 591–601.

[5]
Brin, M. G.. The ubiquity of Thompson’s group *F* in groups of piecewise linear homeomorphisms of the unit interval. J. Lond. Math. Soc. (2)
60(2) (1999), 449–460.

[6]
Brin, M. G.. Personal communication, 2008.

[7]
Brin, M. G. and Squier, C. C.. Groups of piecewise linear homeomorphisms of the real line. Invent. Math.
79(3) (1985), 485–498.

[8]
Brown, K. S.. Finiteness properties of groups. Proceedings of the Northwestern Conference on Cohomology of Groups, Vol. 44 (Evanston, Ill., 1985). North-Holland, Amsterdam, 1987, pp. 45–75.

[9]
Brown, K. S. and Geoghegan, R.. An infinite-dimensional torsion-free FP_{
∞
} group. Invent. Math.
77(2) (1984), 367–381.

[10]
Burillo, J.. Thompson’s Group F. 2016.

[11]
Calegari, D.. Foliations and the Geometry of 3-Manifolds
*(Oxford Mathematical Monographs)*
. Oxford University Press, Oxford, 2007.

[12]
Cannon, J. W., Floyd, W. J. and Parry, W. R.. Introductory notes on Richard Thompson’s groups. Enseign. Math. (2)
42(3–4) (1996), 215–256.

[13]
de la Harpe, P.. Topics in Geometric Group Theory
*(Chicago Lectures in Mathematics)*
. University of Chicago Press, Chicago, 2000.

[14]
Dehornoy, P., Dynnikov, I., Rolfsen, D. and Wiest, B.. Ordering Braids
*(Mathematical Surveys and Monographs, 148)*
. American Mathematical Society, Providence, RI, 2008.

[15]
Deroin, B., Navas, A. and Rivas, C.. Groups, Orders, and Dynamics. 2019, to appear.

[16]
Farb, B. and Franks, J.. Groups of homeomorphisms of one-manifolds. III. Nilpotent subgroups. Ergod. Th. & Dynam. Sys.
23(5) (2003), 1467–1484.

[17]
Farb, B. and Margalit, D.. A Primer on Mapping Class Groups
*(Princeton Mathematical Series, 49)*
. Princeton University Press, Princeton, NJ, 2012.

[18]
Ghys, É.. Groups acting on the circle. Enseign. Math. (2)
47(3–4) (2001), 329–407.

[19]
Ghys, É. and Sergiescu, V.. Sur un groupe remarquable de difféomorphismes du cercle. Comment. Math. Helv.
62(2) (1987), 185–239.

[20]
Higman, G.. On infinite simple permutation groups. Publ. Math. Debrecen
3 (1955), 221–226.

[21]
Higman, G.. Finitely presented infinite simple groups. *Notes on Pure Mathematics*, No. 8, Department of Pure Mathematics, Department of Mathematics, I.A.S. Australian National University, Canberra, 1974.

[22]
Kim, S.-H., Koberda, T. and Lodha, Y.. Chain groups of homeomorphisms of the interval. Ann. Sci. Éc. Norm. Supér., to appear.

[23]
Lyndon, R. C. and Schupp, P. E.. Combinatorial Group Theory
*(Classics in Mathematics)*
. Springer, Berlin, 2001. Reprint of the 1977 edition.

[24]
Navas, A.. Groups of Circle Diffeomorphisms
*(Chicago Lectures in Mathematics)*
, Spanish edn. University of Chicago Press, Chicago, 2011.

[25]
Plante, J. F. and Thurston, W. P.. Polynomial growth in holonomy groups of foliations. Comment. Math. Helv.
51(4) (1976), 567–584.

[26]
Serre, J.-P.. Trees
*(Springer Monographs in Mathematics)*
. Springer, Berlin, 2003. Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation.