Skip to main content Accessibility help
×
Home

Ventilatory responses of ponies and horses to exercise

  • Lisa M Katz (a1), Warwick M Bayly (a1), Melissa T Hines (a1) and Raymond H Sides (a1)

Abstract

Because athletic horses become hypoxaemic and hypercapnoeic during high-intensity exercise but ponies do not, six Thoroughbred horses and five ponies performed an incremental exercise test at speeds with calculated energy requirements that were 40, 60, 80 and 115% of V˙O2max, with the objective of comparing their blood gas and ventilatory responses to exercise. Expired gas and blood samples were taken and breathing mechanics were assessed before exercise and during the last 15 s at each intensity. Maximal V˙O2 and V˙CO2 in horses were 153±5 (SEM) and 187±4 ml kg−1 min−1, respectively, while corresponding values in ponies were 92±4 and 112±7 ml kg−1 min−1. During heavy and supramaximal exercise, horses, but not ponies, became hypoxaemic and hypercapnic. There was no significant difference for V˙E kg−1 between groups during maximal exercise, but PAO2, PaO2 and PvO2 were lower and PaCO2 and [(A−a)O2D] were greater in horses than in ponies. Additionally, the horses' maximal transpulmonary pressure difference was higher and their total pulmonary resistance and ventilatory equivalent lower than in ponies. Flow-volume loops suggested that horses experienced expiratory flow limitation but that ponies did not. These results indicated that horses like Thoroughbreds appear to be expiratory flow-limited and become hypoxaemic and hypercapnic when the demand for gas exchange associated with their high V˙O2max and V˙CO2max is greater than can be met by their ventilatory system. Ponies, which are less capable athletes, could better match their ventilatory response with their metabolic capabilities and so were able to maintain PaO2 in the pre-exercise range and decrease PaCO2 to a tension that was more compatible with acid–base homeostasis.

Copyright

Corresponding author

References

Hide All
1Art, T, Anderson, L, Woakes, AJ, Roberts, C, Butler, PJ, Snow, DH and Lekeux, P (1990a). Mechanics of breathing during strenuous exercise in Thoroughbred horses. Respiration Physiology 82: 279294.
2Bayly, WM and Grant, BD (1986). The possible role of the ventilatory system in limiting maximal equine performance. In: Saltin, B (ed.), Biochemistry of Exercise. Champaign, IL: Human Kinetics, pp. 467473.
3Bayly, WM, Grant, BD, Breeze, RG and Kramer, JW (1983). The effect of maximal exercise on acid base balance and arterial blood gas tensions in Thoroughbred horses. In: Snow, DH, Persson, SGB & Rose, RJ (eds), Equine Exercise Physiology. Cambridge, UK: Granta Editions, pp. 400407.
4Bayly, WM, Hodgson, DR, Schulz, DA, Dempsey, JA and Gollnick, PD (1989). Exercise-induced hypercapnia in the horse. Journal of Applied Physiology 67: 19581966.
5Bayly, WM, Schott, HC and Slocombe, RF (1995). Ventilatory responses of horses to prolonged submaximal exercise. Equine Veterinary Journal Supplement 18: 2328.
6Bayly, WM, Schulz, DA, Hodgson, DR and Gollnick, PD (1987a). Ventilatory response to exercise in horses with exercise-induced hypoxaemia. In: Gillespie, JR & Robinson, NE (eds), Equine Exercise Physiology 2. Ann Arbor, MI. Edwards Brothers, pp. 172182.
7Bayly, WM, Schulz, DA, Hodgson, DR and Gollnick, PD (1987b). Ventilatory responses of the horse to exercise: effect of gas collection systems. Journal of Applied Physiology 63: 12101217.
8Evans, DL and Rose, RJ (1988). Cardiovascular and respiratory responses in Thoroughbred horses during treadmill exercise. The Journal of Experimental Biology 134: 397408.
9Katz, LM, Bayly, WM, Hines, MT and Sides, RH (1999). Differences in the ventilatory responses of horses and ponies to exercise of varying intensities. Equine Veterinary Journal Supplement 30: 4951.
10Thornton, J, Essen-Gustavsson, B, Lindholm, A, McMillen, D and Persson, S (1983). Effects of training and detraining on oxygen uptake, cardiac output, blood gas tensions, pH and lactate concentrations during and after exercise in the horse. In: Snow, DH, Persson, SGB & Rose, RJ (eds), Equine Exercise Physiology. Cambridge, UK: Granta Editions, pp. 470486.
11Wagner, PD, Gillespie, JR, Landgren, GL, Fedde, MR, Jones, BW, DeBowes, RM, Pieschl, RL and Erickson, HH (1989). Mechanism of exercise-induced hypoxaemia in horses. Journal of Applied Physiology 66: 12271233.
12Parks, CM and Manohar, M (1984). Blood gas tensions and acid base status in ponies during treadmill exercise. American Journal of Veterinary Research 45: 1519.
13Rose, RJ, Hodgson, DR, Bayly, WM and Gollnick, PD (1990b). Kinetics of V? O 2 and V?CO 2 in the horse and comparison of five methods for determination of maximum oxygen uptake. Equine Veterinary Journal Supplement 9: 3942.
14Hopkins, SR, Bayly, WM, Slocombe, RF, Wagner, H and Wagner, PD (1998). Effect of prolonged heavy exercise on pulmonary gas exchange in horses. Journal of Applied Physiology 84: 17231730.
15Fedak, MA, Rome, L and Seeherman, HJ (1981). One step N 2 -dilution technique for calibrating open circuit V?O 2 measuring systems. Journal of Applied Physiology 51: 772776.
16Art, T and Lekeux, P (1988). A critical assessment of pulmonary function testing in exercising ponies. Veterinary Research Communications 12: 2539.
17Slocombe, RF, Covelli, G and Bayly, WM (1992). Respiratory mechanics of horses during stepwise treadmill exercise tests and the effect of clenbuterol pretreatment on them. Australian Veterinary Journal 69: 221225.
18DuBois, AB, Brody, AW, Lewis, DH and Burgess, BF Jr (1956). Oscillation mechanics of lungs and chest in man. Journal of Applied Physiology 8: 587594.
19Art, T, Lekeux, P, Gustin, P, Desmecht, D, Amory, H and Paiva, M (1989). Inertance of the respiratory system in ponies. Journal of Applied Physiology 67: 534540.
20Young, SS and Tesarowski, D (1994). Respiratory mechanics of horses measured by conventional and forced oscillation techniques. Journal of Applied Physiology 76: 24672472.
21Gleed, RD, Ducharme, NG, Hackett, RP, Hakim, TS, Erb, HN, Mitchell, LM and Soderholm, LV (1999). Effects of frusemide on pulmonary capillary pressure in horses exercising on a treadmill. Equine Veterinary Journal Supplement 30: 102106.
22Sosa Leon, L, Hodgson, DR, Evans, DL, Ray, SP, Carlson, GP and Rose, RJ (2002). Hyperhydration prior to moderate-intensity exercise causes arterial hypoxaemia. Equine Veterinary Journal Supplement 34: 425429.
23Wilkins, PA, Gleed, RD, Drivitski, NM and Dobson, A (2001). Extravascular lung water in the exercising horse. Journal of Applied Physiology 91: 24422450.
24West, JB (1995). Respiratory Physiology – The Essentials 5th edn. Baltimore, OH: Williams and Wilkins.
25Gehr, P, Mwangi, DK, Ammann, A, Maloiy, GMO, Taylor, CR and Weibel, ER (1981). Design of the mammalian respiratory system. V. Scaling morphometric pulmonary diffusing capacity to body mass: wild and domestic mammals. Respiratory Physiology 44: 6186.
26Weibel, ER (1983). Is the lung built reasonably? American Review of Respiratory Disorders 128: 752760.
27Lekeux, P and Art, T (1994). The respiratory system: anatomy, physiology and adaptations to exercise and training. In: Rose, RJ & Hodgson, DR (eds), The Equine Athlete. Philadelphia, PA: Saunders, pp. 79128.
28Wagner, P, Erickson, BK, Kubo, K, Hiraga, A, Kai, M, Yamaya, Y, Richardson, R and Seaman, J (1995). Maximum oxygen transport and utilization before and after splenectomy. Equine Veterinary Journal Supplement 18: 8289.
29Davis, JL and Manohar, M (1988). Effect of splenectomy on exercise-induced pulmonary and systemic hypertension in ponies. American Journal of Veterinary Research 49: 11691172.
30Poole, DC (2003). Current concepts of oxygen transport during exercise. Equine and Comparative Exercise Physiology. 1: 522.
31Dempsey, JA (1985). Is the lung built for exercise? Medicine and Science in Sports and Exercise 18: 143155.
32Dempsey, JA and Wagner, PD (1999). Exercise-induced arterial hypoxaemia. Journal of Applied Physiology 87: 19972006.
33Wagner, PD (1982). Influence of mixed venous PO 2 on diffusion of O 2 across the pulmonary blood:gas barrier. Clinical Physiology 2: 105115.
34West, JB (1969). Effect of slope and shape of dissociation curve on pulmonary gas exchange. Respiratory Physiology 8: 6685.
35Karas, RH, Taylor, CR, Linstedt, SL, Reeves, RB and Weibel, ER (1987). Adaptive variation in the mammalian respiratory system in relation to energetic demand: VII. Flow of oxygen across the pulmonary gas exchanger. Respiratory Physiology 69: 101115.
36Marnier, G, Moinard, J, Techoueyres, P, Varene, N and Guenard, H (1990). Pulmonary diffusion limitation after prolonged strenuous exercise. Respiratory Physiology 83: 143154.
37Erikson, BK, Pieschl, RL and Erikson, HH (1991). Alleviation of exercise-induced hypoxaemia utilizing inspired 79% helium, 20.95% oxygen. In: Persson, SGB, Lindholm, A & Jeffcott, L (eds), Equine Exercise Physiology 3. Davis, CA: ICEEP Publications, pp. 4854.
38Evans, DL and Rose, RJ (1987). Maximum oxygen uptake in racehorses: changes with training state and prediction from submaximal cardiorespiratory measurements. In: Gillespie, JR & Robinson, NE (eds), Equine Exercise Physiology 2. Ann Arbor, MI: Edwards Brothers, pp. 5167.
39Art, T and Lekeux, P (1993). Training induced modifications in cardiorespiratory and ventilatory measurements in Thoroughbred horses. Equine Veterinary Journal 25: 532536.
40McDonough, P, Kindig, CA, Erickson, HH and Poole, DC (2002). Mechanistic basis for the gas exchange threshold in Thoroughbred horses. Journal of Applied Physiology 92: 14991505.
41Harms, CA, Wetter, T, St Croix, CM, Pegelow, DF and Dempsey, JA (2000). Pegelow DF, and Dempsey JA, Effects of respiratory muscle work on exercise performance. Journal of Applied Physiology 89: 131138.
42Harms, CA, Wetter, T, McClaran, SR, Pegelow, DF, Nickele, GA, Nelson, WB and Dempsey, JA (1998). Effect of respiratory muscle work on cardiac output and its distribution during maximal exercise. Journal of Applied Physiology 85: 609618.
43Harms, CA, Babcock, MA, McClaran, SR, Pegelow, DF, Nickele, GA, Nelson, WB and Dempsey, JA (1997). Respiratory muscle work compromises leg blood flow during maximal exercise. Journal of Applied Physiology 82: 15731583.
44Art, T and Lekeux, P (1989). Work of breathing in exercising ponies. Research in Veterinary Science 44: 4953.
45Art, T, Serteyn, D and Lekeux, P (1988). Effect of exercise on the partitioning of equine respiratory resistance. Equine Veterinary Journal 20: 268273.
46Dempsey, JA and Johnson, BD (1992). Demand versus capacity in the healthy pulmonary system. Schweizerischen Zeitschrift fur Sportmedizin 40: 5564.
47Johnson, BD, Saupe, KW and Dempsey, JA (1991). Mechanical constraints on exercise hyperpnea in endurance athletes. Journal of Applied Physiology 73: 874886.
48McClaran, SR, Wetter, T, Pegelow, DF and Dempsey, JA (1999). Role of expiratory flow limitation in determining lung volumes and ventilation during exercise. Journal of Applied Physiology 86: 13571366.

Keywords

Related content

Powered by UNSILO

Ventilatory responses of ponies and horses to exercise

  • Lisa M Katz (a1), Warwick M Bayly (a1), Melissa T Hines (a1) and Raymond H Sides (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.