Skip to main content Accessibility help
×
Home

Acute vascular occlusion in horses: effects on skeletal muscle size and blood flow

  • T Abe (a1), CF Kearns (a2), HC Manso Filho (a3), Y Sato (a4), M Sleeper (a5) and KH McKeever (a3)...

Abstract

The purpose of this study was to demonstrate whether acute vascular occlusion was safe and if it would result in changes to limb muscle size in horses. Six healthy, unfit Standardbred mares were used. Horses (standing at rest) wore an occlusion cuff at the most proximal position of the left forelimb. The right forelimb was used as control. An occlusion pressure of 200 mmHg was set for 5 min followed by a 2 min recovery. Three sets of occlusions were given to each horse. Muscle thickness was measured using B-mode ultrasound. The circumference of the forelimb and first phalanx was measured using a flexible tape measure. Pulsed-wave Doppler was performed on the radialis artery with a 5–10 MHz mechanical transducer at baseline and at each occlusion. Peak flow velocity (PFV) and the flow velocity integral (FVI) were measured each time. Mid-forelimb, but not first phalanx, girth was increased (P<0.05) in the occluded but not in the control leg following occlusion. Extensor and flexor muscle thickness was increased (P<0.05) in the occluded but not in the control leg. There were no changes (P>0.05) in PFV or FVI at any measurement time point. Acute vascular occlusion may be a suitable and safe model for studying muscle hypertrophy in horses.

Copyright

Corresponding author

References

Hide All
1Takarada, Y, Nakamura, Y, Aruga, S, Onda, T, Miyazaki, S and Ishii, N (2000). Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. Journal of Applied Physiology 88: 6165.
2Takarada, Y, Takazawa, H and Ishii, N (2000). Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Medicine and Science in Sports and Exercise 32: 20352039.
3Abe, T, Midorikawa, T, Yasuda, T, Sato, Y, Ishii, N and Madarame, H (2003). Effects of low-intensity ‘Kaatsu’ resistance training on muscle size (in Japanese) In: Proceedings of the 16th Scientific Congress for Sports and Exercise Training Hiroshima. Japan: Yasuda Women's University, Japan P.16.
4Kearns, CF, McKeever, HK, Kumagai, K and Abe, T (2002). Fat-free mass is related to one-mile race performance in elite Standardbred horses. The Vetenary Journal 163: 260266.
5Kearns, CF and McKeever, KH (2002). Clenbuterol diminishes aerobic performance in horses. Medicine and Science in Sports and Exercise 34: 19761985.
6Pourcelot, L (1974). Applications cliniques de l'examen Doppler transcutane. In: Peronnequs, P (ed) Velecoimetrie ultrasonore Doppler Paris: INSERM pp. 780785.
7Wolthuls, RA, Bergman, SA and Nicogossian, AE (1974). Physiological effects of locally applied reduced pressure in man. Physiological Review 54: 566595.
8Hood, DM, Grosenbaugh, DA, Mostafa, MB, Morgan, SJ and Thomas, BC (1993). The role of vascular mechanisms in the development of acute equine laminitis. Journal of Veterinary Internal Medicine 13: 240242.
9Garner, HE, Hutcheson, DP, Coffman, JR, Hahn, AW and Salem, C (1977). Lactic acidosis: a factor associated with equine laminitis. Journal of Animal Science 45: 10371041.
10Rowe, JB, Lees, MJ and Pethick, DW (1995). Prevention of acidosis and laminitis associated with grain feeding in horses. Journal of Nutrition 124 Suppl. 12 2742S – 2744S
11Persson, S (1967). On blood volume and working capacity in horses: studies of methodology and physiological and pathological variations. Acta Veterinaria Scandinavica 19: 9189.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed