Skip to main content Accessibility help
×
Home

Whole-genome sequencing analysis of human bocavirus detected in South Korea

  • L. H. Kang (a1), Y. J. Won (a1), A. R. Lee (a1), S. G. Lee (a2), H. G. Cho (a3), Y. J. Park (a4), J. I. Han (a5) and S. Y. Paik (a1)...

Abstract

Human bocaviruses (HBoVs) have been detected in human gastrointestinal infections worldwide. In 2005, HBoV was also discovered in infants and children with infections of the lower respiratory tract. Recently, several genotypes of this parvovirus, including HBoV genotype 2 (HBoV2), genotype 3 (HBoV3) and genotype 4 (HBoV4), were discovered and found to be closely related to HBoV. HBoV2 was first detected in stool samples from children in Pakistan, followed by detection in other countries. HBoV3 was detected in Australia and HBoV4 was identified in stool samples from Nigeria, Tunisia and the USA. Recently, HBoV infection has been on the rise throughout the world, particularly in countries neighbouring South Korea; however, there have been very few studies on Korean strains. In this study, we characterised the whole genome and determined the phylogenetic position of CUK-BC20, a new clinical HBoV strain isolated in South Korea. The CUK-BC20 genome of 5184 nucleotides (nt) contains three open-reading frames (ORFs). The genotype of CUK-BC20 is HBoV2, and 98.77% of its nt sequence is identical with those of other HBoVs, namely Rus-Nsc10-N386. Especially, the ORF3 amino acid sequences from positions 212–213 and 454 corresponding to a variable region (VR)1 and VR5, respectively, showed genotype-specific substitutions that distinguished the four HBoV genotypes. As the first whole-genome sequence analysis of HBoV in South Korea, this information will provide a valuable reference for the detection of recombination, tracking of epidemics and development of diagnosis methods for HBoV.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Whole-genome sequencing analysis of human bocavirus detected in South Korea
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Whole-genome sequencing analysis of human bocavirus detected in South Korea
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Whole-genome sequencing analysis of human bocavirus detected in South Korea
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence: S. Y. Paik, E-mail: paik@catholic.ac.kr

References

Hide All
1.Chen, AY, et al. (2010) Characterization of the gene expression profile of human bocavirus. Virology 403(2), 145154.
2.Kapoor, A, et al. (2010) Human bocaviruses are highly diverse, dispersed, recombination prone, and prevalent in enteric infections. The Journal of Infectious Diseases 201(11), 16331643.
3.Khamrin, P, et al. (2013) Complete genome sequence analysis of novel human bocavirus reveals genetic recombination between human bocavirus 2 and human bocavirus 4. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases 17, 132136.
4.Xu, ZQ, et al. (2011) Development of a real-time PCR assay for detecting and quantifying human bocavirus 2. Journal of Clinical Microbiology 49(4), 15371541.
5.Dijkman, R, et al. (2009) Human bocavirus can be cultured in differentiated human airway epithelial cells. Journal of Virology 83(15), 77397748.
6.Zhao, H, et al. (2012) Detection of a bocavirus circular genome in fecal specimens from children with acute diarrhea in Beijing, China. PLoS ONE 7(11), e48980.
7.Babkin, IV, et al. (2015) A study of the human bocavirus replicative genome structures. Virus Research 195, 196202.
8.Moffatt, S, et al. (1998) Human parvovirus B19 nonstructural (NS1) protein induces apoptosis in erythroid lineage cells. Journal of Virology 72(4), 30183028.
9.Raab, U, et al. (2002) NS1 protein of parvovirus B19 interacts directly with DNA sequences of the p6 promoter and with the cellular transcription factors Sp1/Sp3. Virology 293(1), 8693.
10.Schildgen, O, et al. (2008) Human bocavirus: passenger or pathogen in acute respiratory tract infections? Clinical Microbiology Reviews 21(2), 291304, table of contents.
11.McIntosh, K. (2006) Human bocavirus: developing evidence for pathogenicity. The Journal of Infectious Diseases 194(9), 11971199.
12.Lindner, J and Modrow, S. (2008) Human bocavirus – a novel parvovirus to infect humans. Intervirology 51(2), 116122.
13.Chieochansin, T, et al. (2007) Complete coding sequences and phylogenetic analysis of Human Bocavirus (HBoV). Virus Research 129(1), 5457.
14.Maggi, F, et al. (2007) Human bocavirus in Italian patients with respiratory diseases. Journal of Clinical Virology: The Official Publication of the Pan American Society for Clinical Virology 38(4), 321325.
15.Blinkova, O, et al. (2009) Frequent detection of highly diverse variants of cardiovirus, cosavirus, bocavirus, and circovirus in sewage samples collected in the United States. Journal of Clinical Microbiology 47(11), 35073513.
16.Alam, MM, et al. ‘(2015) Human bocavirus in Pakistani children with gastroenteritis’. Journal of Medical Virology 87(4), 656663.
17.Fields, BN, Knipe, DM and Howley, PM (2007) Fields Virology. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.
18.Tewary, SK, et al. (2013) Structure of the NS1 protein N-terminal origin recognition/nickase domain from the emerging human bocavirus. Journal of Virology 87(21), 1148711493.
19.Allander, T, et al. (2005) Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proceedings of the National Academy of Sciences of the United States of America 102(36), 1289112896.
20.Guido, M, et al. (2016) Human bocavirus: current knowledge and future challenges. World Journal of Gastroenterology 22(39), 86848697.
21.Allander, T, et al. (2007) Human bocavirus and acute wheezing in children. Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America 44(7), 904910.
22.Han, TH, et al. (2009) Detection of human bocavirus-2 in children with acute gastroenteritis in South Korea. Archives of Virology 154(12), 19231927.
23.Jin, Y, et al. (2011) High prevalence of human bocavirus 2 and its role in childhood acute gastroenteritis in China. Journal of Clinical Virology: the Official Publication of the Pan American Society for Clinical Virology 52(3), 251253.
24.Kesebir, D, et al. (2006) Human bocavirus infection in young children in the United States: molecular epidemiological profile and clinical characteristics of a newly emerging respiratory virus. The Journal of Infectious Diseases 194(9), 12761282.
25.Monavari, SH, et al. (2013) Human bocavirus in Iranian children with acute gastroenteritis. Medical Journal of the Islamic Republic of Iran 27(3), 127131.
26.Xiang, JY, et al. (2014) [Etiological study of human bocavirus 1–4 in children with acute diarrhea in Lanzhou, China]. Bing Du Xue Bao=Chinese Journal of Virology 30(4), 402407.
27.Li, H, et al. (2015) The genomic and seroprevalence of human bocavirus in healthy Chinese plasma donors and plasma derivatives. Transfusion 55(1), 154163.
28.Arnold, JC, et al. (2006) Human bocavirus: prevalence and clinical spectrum at a children's hospital. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 43(3), 283288.
29.Kang, LH, et al. (2013) Simultaneous detection of waterborne viruses by multiplex real-time PCR. Journal of Microbiology (Seoul, Korea) 51(5), 671675.
30.Kapoor, A, et al. (2009) A newly identified bocavirus species in human stool. The Journal of Infectious Diseases 199(2), 196200.
31.Cashman, O and O'Shea, H. (2012) Detection of human bocaviruses 1, 2 and 3 in Irish children presenting with gastroenteritis. Archives of Virology 157(9), 17671773.
32.Albuquerque, MC, et al. (2007) Human bocavirus infection in children with gastroenteritis, Brazil. Emerging Infectious Diseases 13(11), 17561758.
33.Arthur, JL, et al. (2009) A novel bocavirus associated with acute gastroenteritis in Australian children. PLoS Pathogens 5(4), e1000391.
34.Tamura, K, et al. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12), 27252729.
35.Saitou, N and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4), 406425.
36.Choi, EH, et al. (2006) The association of newly identified respiratory viruses with lower respiratory tract infections in Korean children, 2000–2005. Clinical Infectious Diseases 43(5), 585592.
37.Manning, A, et al. (2006) Epidemiological profile and clinical associations of human bocavirus and other human parvoviruses. The Journal of Infectious Diseases 194(9), 12831290.
38.Fry, AM, et al. (2007) Human bocavirus: a novel parvovirus epidemiologically associated with pneumonia requiring hospitalization in Thailand. The Journal of Infectious Diseases 195(7), 10381045.
39.Foulongne, V, et al. (2006) Human bocavirus in French children. Emerging Infectious Diseases 12(8), 12511253.
40.Babkin, IV, et al. (2013) Evolutionary time-scale of primate bocaviruses. Infection, Genetics and Evolution 14, 265274.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed