Skip to main content Accessibility help
×
×
Home

There is no correlation between sublineages and drug resistance of Mycobacterium tuberculosis Beijing/W lineage clinical isolates in Xinjiang, China

  • L. YUAN (a1), Y. HUANG (a1) (a2), L. G. MI (a1), Y. X. LI (a1), P. Z. LIU (a3), J. ZHANG (a1), H. Y. LIANG (a1), F. LI (a1), H. LI (a1), S. Q. ZHANG (a4) and W. J. LI (a1)...

Summary

The Beijing/W lineage strains are the major prevalent strains in China. The prevalence, mortality and drug-resistant rates of tuberculosis in Xinjiang, Northwestern China are higher than in other parts of the country. Our previous study results showed that the dominant strains of Mycobacterium tuberculosis (MTB) were ‘Beijing/W lineage’ MTB in Xinjiang; those strains had no significant correlation with drug resistance. We investigated whether the prevalence of ‘Beijing/W lineage’ sublineage strains was associated with drug resistance. We collected 478 sputum specimens from patients with pulmonary tuberculosis. Beijing/W strains and their sublineages were identified by distinguishing five specific large sequence polymorphisms, using polymerase chain reaction. All strains were subjected to a drug susceptibility test using the proportion method on Löwenstein–Jensen culture medium. In total, 379 clinical isolates of MTB were isolated and identified, 57·26% of these isolates were identified as Beijing/W strains, of which 11·06% isolates were in sublineage 105, 14·74% isolates in sublineage 207, 69·59% isolates in sublineage 181, and 4·61% isolates in sublineage 150. None of the isolates was in sublineage 142. Our data showed there were four sublineages of Beijing/W isolates in Xinjiang province, China. However, there were no correlations between drug resistance and the sublineages of Beijing/W strains.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      There is no correlation between sublineages and drug resistance of Mycobacterium tuberculosis Beijing/W lineage clinical isolates in Xinjiang, China
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      There is no correlation between sublineages and drug resistance of Mycobacterium tuberculosis Beijing/W lineage clinical isolates in Xinjiang, China
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      There is no correlation between sublineages and drug resistance of Mycobacterium tuberculosis Beijing/W lineage clinical isolates in Xinjiang, China
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence http://creativecommons.org/licenses/by/3.0/.

Corresponding author

* Author for correspondence: Dr L. Yuan, Department of Pathogenic Biology and Immunology, School of Medicine, Shi Hezi University, 832002 Shihezi City, Xinjiang, China. (Email: yuanli832000@sina.com)

References

Hide All
1. Hirsh, AE, et al. Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proceedings of the National Academy of Sciences USA 2004; 101: 48714876.
2. Gagneux, S, Small, PM. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infectious Diseases 2007; 7: 328337.
3. Gagneux, S, et al. Variable host-pathogen compatibility in Mycobacterium tuberculosis . Proceedings of the National Academy of Sciences USA 2006; 103: 28692873.
4. van Soolingen, D, et al. Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. Journal of Clinical Microbiology 1995; 33: 32343238.
5. Tsolaki, AG, et al. Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proceedings of the National Academy of Sciences USA 2004; 101: 48654870.
6. Tsolaki, AG, et al. Genomic deletions classify the Beijing/W strains as a distinct genetic lineage of Mycobacterium tuberculosis . Journal of clinical microbiology 2005; 43: 31853191.
7. Anh, DD, et al. Mycobacterium tuberculosis Beijing genotype emerging in Vietnam. Emerging Infectious Diseases 2000; 6: 302305.
8. Johnson, R, et al. An outbreak of drug-resistant tuberculosis caused by a Beijing strain in the western Cape, South Africa. International Journal of Tuberculosis and Lung Disease 2006; 10: 14121414.
9. Toungoussova, OS, et al. Spread of drug-resistant Mycobacterium tuberculosis strains of the Beijing genotype in the Archangel Oblast, Russia. Journal of Clinical Microbiology 2002; 40: 19301937.
10. Frieden, TR, et al. A multi-institutional outbreak of highly drug-resistant tuberculosis: epidemiology and clinical outcomes. Journal of the American Medical Association 1996; 276: 12291235.
11. Lan, NT, et al. Mycobacterium tuberculosis Beijing genotype and risk for treatment failure and relapse, Vietnam. Emerging Infectious Diseases 2003; 9: 16331635.
12. Smith, NH, et al. The population structure of Mycobacterium bovis in Great Britain: clonal expansion. Proceedings of the National Academy of Sciences USA 2003; 100: 15 27115 275.
13. Ebrahimi-Rad, M, et al. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerging Infectious Diseases 2003; 9: 838845.
14. Zhao, XQ, et al. Preliminary analysis of the distribution of Beijing genotype strains of Mycobacterium tuberculosis in parts of China. Chinese Journal of Practical Preventive Medicine 2012; 19: 662664.
15. Jia, W, et al. The report of WHO drug resistance surveillance on tuberculosis, Xinjiang. Journal of the Chinese Antituberculosis Association 2008; 30: 307310.
16. China Antituberculosis Association. The laboratory science procedure of diagnostic bacteriology in tuberculosis. Bulletin of the Chinese Antituberculosis Association 1996; 18: 2831.
17. Zhang, J, et al. Genotypes and drug susceptibility of Mycobacterium tuberculosis isolates in Shihezi, Xinjiang Province, China. BMC Research Notes 2012; 5: 309.
18. Dou, HY, et al. Molecular epidemiology and evolutionary genetics of Mycobacterium tuberculosis in Taipei. BMC Infectious Diseases 2008; 8: 170.
19. Huard, RC, et al. PCR-based method to differentiate the subspecies of the Mycobacterium tuberculosis complex on the basis of genomic deletions. Journal of Clinical Microbiology 2003; 41: 16371650.
20. Jinghua, L, et al. A new method for the identification of the ‘Beijing family’ strain of Mycobacterium tuberculosis . Chinese Journal of Microbiology and Immunology 2008; 28: 172175.
21. Reed, MB, et al. Major Mycobacterium tuberculosis lineages associate with patient country of origin. Journal of Clinical Microbiology 2009; 47: 11191128.
22. Manca, C, et al. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha/beta. Proceedings of the National Academy of Sciences USA 2001; 98: 57525757.
23. Toungoussova, OS, et al. Molecular epidemiology and drug resistance of Mycobacterium tuberculosis isolates in the Archangel prison in Russia: predominance of the W-Beijing clone family. Clinical Infectious Diseases 2003; 37: 665672.
24. Cox, HS, et al. The Beijing genotype and drug resistant tuberculosis in the Aral Sea region of Central Asia. Respiratory Research 2005; 6: 134.
25. Glynn, JR, et al. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerging Infectious Diseases 2002; 8: 843849.
26. Glynn, JR, et al. Mycobacterium tuberculosis Beijing genotype, northern Malawi. Emerging Infectious Diseases 2005; 11: 150153.
27. Hanekom, M et al. A recently evolved sublineage of the Mycobacterium tuberculosis Beijing strain family is associated with an increased ability to spread and cause disease. Journal of Clinical Microbiology 2007; 45: 14831490.
28. Mokrousov, I, et al. Evolution of drug resistance in different sublineages of Mycobacterium tuberculosis Beijing genotype. Antimicrobial Agents and Chemotherapy 2006; 50: 28202823.
29. Strauss, OJ, et al. Spread of a low-fitness drug-resistant Mycobacterium tuberculosis strain in a setting of high human immunodeficiency virus prevalence. Journal of Clinical Microbiology 2008; 46: 15141516.
30. Thwaites, G, et al. Relationship between Mycobacterium tuberculosis genotype and the clinical phenotype of pulmonary and meningeal tuberculosis. Journal of Clinical Microbiology 2008; 46: 13631368.
31. Rindi, L, et al. Evolutionary pathway of the Beijing lineage of Mycobacterium tuberculosis based on genomic deletions and mutT genes polymorphisms. Infection, genetics and evolution. Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases 2009; 9: 4853.
32. Stavrum, R, et al. Genomic diversity among Beijing and non-Beijing Mycobacterium tuberculosis isolates from Myanmar. PLoS One 2008; 3: e1973.
33. Rajapaksa, US, Perera, AJ. Sublineages of Beijing strain of Mycobacterium tuberculosis in Sri Lanka. Indian Journal of Microbiology 2011; 51: 410412.
34. Gao, TJ, et al. Characteristics of epidemiology of Beijing/W lineage Mycobacterium tuberculosis isolates in Changping, Beijing. Chinese Journal of Zhengzhou University: Medical Sciences 2010; 45: 4850.
35. Kong, Y, et al. Population-based study of deletions in five different genomic regions of Mycobacterium tuberculosis and possible clinical relevance of the deletions. Journal of Clinical Microbiology 2006; 44: 39403946.
36. Kato-Maeda, M, et al. Differences among sublineages of the East-Asian lineage of Mycobacterium tuberculosis in genotypic clustering. International Journal of Tuberculosis and Lung Disease 2010; 14: 538544.
37. Reed, MB, et al. The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated. Journal of Bacteriology 2007; 189: 25832589.
38. Reed, MB, et al. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 2004; 431: 8487.
39. Nikolayevskyy, VV, et al. Molecular epidemiology and prevalence of mutations conferring rifampicin and isoniazid resistance in Mycobacterium tuberculosis strains from the southern Ukraine. Clinical Microbiology and Infection 2007; 13: 129138.
40. Kruuner, A, et al. Spread of drug-resistant pulmonary tuberculosis in Estonia. Journal of Clinical Microbiology 2001; 39: 33393345.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed