Skip to main content Accessibility help
×
Home

Temporal and spatial variation in Anaplasma phagocytophilum infection in Swedish moose (Alces alces)

  • J. MALMSTEN (a1) (a2), D. GAVIER WIDÉN (a2) (a3), G. RYDEVIK (a4), L. YON (a5) (a6), M. R. HUTCHINGS (a7), C.-G. THULIN (a8), L. SÖDERQUIST (a1), A. ASPAN (a9), S. STUEN (a10) and A.-M. DALIN (a1)...

Summary

The occurrence of Anaplasma phagocytophilum was investigated in spleen and serum samples from Swedish moose (Alces alces) in southern Sweden (island and mainland). Samples were analysed for presence of A. phagocytophilum DNA by real-time PCR (n = 263), and for Anaplasma antibodies with ELISA serology (n = 234). All serum samples had antibodies against A. phagocytophilum. The mean DNA-based prevalence was 26·3%, and significant (P < 0·01) temporal, and spatial variation was found. Island moose had significantly (P < 0·001) higher prevalence of A. phagocytophilum DNA than moose from the mainland areas. Two samples were sequenced to determine genetic variation in the 16S rRNA and groESL genes. Genetic sequence similarity with the human granulocytic anaplasmosis agent, equine granulocytic ehrlichiosis agent, and different wildlife-associated A. phagocytophilum variants were observed in the 16S rRNA and groESL genes. Our study shows that moose are exposed to A. phagocytophilum in Sweden, and represent a potential wildlife reservoir of the pathogen.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Temporal and spatial variation in Anaplasma phagocytophilum infection in Swedish moose (Alces alces)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Temporal and spatial variation in Anaplasma phagocytophilum infection in Swedish moose (Alces alces)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Temporal and spatial variation in Anaplasma phagocytophilum infection in Swedish moose (Alces alces)
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .

Corresponding author

* Author for correspondence: Dr J. Malmsten, Department of Pathology and Wildlife Diseases, National Veterinary Institute, 751 89 Uppsala, Sweden. (Email: jonas.malmsten@sva.se)

References

Hide All
1. Woldehiwet, Z. The natural history of Anaplasma phagocytophilum . Veterinary Parasitology 2010; 167: 108122.
2. Teglas, MB, Foley, J. Differences in the transmissibility of two Anaplasma phagocytophilum strains by the North American tick vector species, Ixodes pacificus and Ixodes scapularis (Acari: Ixodidae). Experimental & Applied Accarology 2006; 38: 4758.
3. Gribble, DH. Equine ehrlichiosis. Journal of the American Veterinary Medical Association 1969; 155: 462.
4. Chen, SM, et al. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. Journal of Clinical Microbiology 1994; 32: 589595.
5. Dumler, JS, et al. Human granulocytic anaplasmosis and Anaplasma phagocytophilum . Emerging Infectious Diseases 2005; 11: 18281834.
6. Thomas, RJ, Dumler, JS, Carlyon, JA. Current management of human granulocytic anaplasmosis, human monocytic ehrlichiosis and Ehrlichia ewingii ehrlichiosis. Expert Review of Anti-infective Therapy 2009; 7: 709.
7. Jenkins, A, et al. Ehrlichiosis in a moose calf in Norway. Journal of Wildlife Diseases 2001; 37: 201203.
8. Stuen, S, et al. Granulocytic ehrlichiosis in a roe deer calf in Norway. Journal of Wildlife Diseases 2001; 37: 614616.
9. Stuen, S, et al. A paretic condition in an Anaplasma phagocytophilum infected roe deer calf. Journal of Wildlife Diseases 2006; 42: 170.
10. Stuen, S, et al. Antibodies to granulocytic Ehrlichia in moose, red deer, and roe deer in Norway. Journal of Wildlife Diseases 2002; 38: 16.
11. Milner, JM, van Beest, FM. Ecological correlates of a tick-borne disease, Anaplasma phagocytophilum in moose in southern Norway. European Journal of Wildlife Research 2013; 59: 399406.
12 Petrovec, M, et al. Infection with Anaplasma phagocytophila in cervids from Slovenia: evidence of two genotypic lineages. Wiener Klinische Wochenschrift 2002; 114: 641.
13. Silaghi, C, et al. Genetic variants of Anaplasma phagocytophilum in wild caprine and cervid ungulates from the Alps in Tyrol, Austria. Vector-Borne and Zoonotic Diseases 2011; 11: 355362.
14. Welc-Falęciak, R, et al. Co-infection and genetic diversity of tick-borne pathogens in roe deer from Poland. Vector-Borne and Zoonotic Diseases. Published online: 8 March 2013 . doi:10.1089/vbz.2012.1136.
15. Zeman, P, Pecha, M. Segregation of genetic variants of Anaplasma phagocytophilum circulating among wild ruminants within a Bohemian forest (Czech Republic). International Journal of Medical Microbiology 2008; 298: 203210.
16. Ladbury, GAF, et al. Dynamic transmission of numerous Anaplasma phagocytophilum genotypes among lambs in an infected sheep flock in an area of anaplasmosis endemicity. Journal of Clinical Microbiology 2008; 46: 16861691.
17. Scharf, W, et al. Distinct host Species horrelate with Anaplasma phagocytophilum ankA gene clusters. Journal of Clinical Microbiology 2011; 49: 790796.
18. Stuen, S, et al. Genetic variants of Anaplasma phagocytophilum in Norway. International Journal of Medical Microbiology 2006; 296: 164166.
19. Stuen, S, et al. Anaplasma phagocytophilum variants in sympatric red deer (Cervus elaphus) and sheep in southern Norway. Ticks and Tick-borne Diseases 2013; 4: 197201.
20. Bernodt, K. Necropsy report no. V392/05. National Veterinary Institute, Uppsala, Sweden 2005.
21. Swedish Association for Hunting and Wildlife Management. Hunting statistics database (https://www.viltdata.se). Accessed 28 March 2013.
22. Swedish Board of Agriculture. National animal health database (https://www.jordbruksverket.se). Accessed 20 May 2013.
23. Nilsson, P, Cory, N. Forestry Statistics 2011. Umeå, Sweden: Department of Forest Resource Management, Swedish University of Agricultural Sciences. ISSN .
24. Wallin, K. Predicting body mass from chest circumference in moose Alces alces . Wildlife Biology 1996; 2: 5358.
25. Wolfe, M. Age determination in moose from cemental layers of molar teeth. Journal of Wildlife Management 1969; 33: 428431.
26. Goodman, JL, et al. Direct cultivation of the causative agent of human granulocytic ehrlichiosis. New England Journal of Medicine 1996; 334: 209215. [Erratum, 1996; 335: 361.]
27. Jäderlund, KH, et al. Cerebrospinal fluid PCR and antibody concentrations against Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato in dogs with neurological signs. Veterinary Internal Medicine 2009; 23: 669672.
28. Franzén, P, et al. Acute clinical, hematologic, serologic, and polymerase chain reaction findings in horses experimentally infected with a European strain of Anaplasma phagocytophilum . Journal of Veterinary Internal Medicine 2005; 19: 232239.
29. Chae, J, et al. Comparison of the nucleotide sequences of 16S rRNA, 444Ep-ank, and groESL heat shock operon genes in naturally occurring Ehrlichia equi and human granulocytic ehrlichiosis agent isolates from Northern California. Journal of Clinical Microbiology 2000; 38: 13641369.
30. Stuen, S, et al. Experimental Ehrlichia phagocytophila infection in red deer (Cervus elaphus). Veterinary Record 2001; 149: 390392.
31. Chaput, EK, Meek, JI, Heimer, R. Spatial analysis of human granulocytic ehrlichiosis near Lyme, Connecticut. Emerging Infectious Diseases 2002; 8: 943948.
32. Bjöersdorff, A, et al. Ehrlichia-infected ticks on migrating birds. Emerging Infectious Diseases 2001; 7: 877.
33. Rejmanek, D, et al. Temporal patterns of tick-borne granulocytic anaplasmosis in California. Ticks and Tick-borne Diseases 2011; 2: 8187.
34. Granquist, EG, et al. Variant -and individual dependent nature of persistent Anaplasma phagocytophilum infection. Acta Veterinaria Scandinavica 2010; 52: 17.
35. Egenvall, A, et al. Detection of granulocytic Ehrlichia species DNA by PCR in persistently infected dogs. Veterinary Record 2000; 146: 186190.
36. Stuen, S, Olsson Engvall, E, Artursson, K. Persistence of Ehrlichia phagocytophila infection in lambs in relation to clinical parameters and antibody responses. Veterinary Record 1998; 143: 553555.
37. Pusterla, N, Lutz, H, Braun, U. Experimental infection of four horses with Ehrlichia phagocytophila . Veterinary Record 1998; 143: 303305.
38. Skarphédinsson, S, Jensen, PM, Kristiansen, K. Survey of tickborne infections in Denmark. Emerging Infectious Diseases 2005; 11: 1055.
39. Liz, J, et al. PCR detection and serological evidence of granulocytic ehrlichial infection in roe deer (Capreolus capreolus) and chamois (Rupicapra rupicapra). Journal of Clinical Microbiology 2002; 40: 892.
40. Žele, D, et al. Evidence of Anaplasma phagocytophilum in game animals from Slovenia. Acta Veterinaria Hungarica 2012; 60: 441448.
41. Polin, H, et al. Molecular evidence of Anaplasma phagocytophilum in Ixodes ricinus ticks and wild animals in Austria. Journal of Clinical Microbiology 2004; 42: 22852286.
42. Ebani, VV, et al. Anaplasma phagocytophilum infection in a fallow deer (Dama dama) population in a preserve of central Italy. New Microbiologica 2007; 30: 161165.
43. Stuen, S. Experimental tick-borne fever infection in reindeer (Rangifer tarandus tarandus). Veterinary Record 1996; 138: 595.
44. Paxton, EA, Scott, GR. Detection of antibodies to the agent of tick-borne fever by indirect immunofluorescence. Veterinary Microbiology 1989; 21: 133138.
45. Nyindo, MB, et al. Immune response of ponies to experimental infection with Ehrlichia equi . American Journal of Veterinary Research 1978; 39: 15.
46. Stuen, S, et al. Cyclic variation in lambs infected with Anaplasma phagocytophilum . Veterinary Record 2008; 163: 338339.
47. Stuen, S, Bergström, K, Palmér, E. Reduced weight gain due to subclinical Anaplasma phagocytophilum (formerly Ehrlichia phagocytophila) infection. Experimental and Applied Acarology 2002; 28: 209215.
48. Bjöersdorff, A, et al. Human granulocytic ehrlichiosis as a common cause of tick-associated fever in southeast Sweden: report from a prospective clinical study. Scandinavian Journal of Infectious Diseases 2002; 34: 187191.

Keywords

Temporal and spatial variation in Anaplasma phagocytophilum infection in Swedish moose (Alces alces)

  • J. MALMSTEN (a1) (a2), D. GAVIER WIDÉN (a2) (a3), G. RYDEVIK (a4), L. YON (a5) (a6), M. R. HUTCHINGS (a7), C.-G. THULIN (a8), L. SÖDERQUIST (a1), A. ASPAN (a9), S. STUEN (a10) and A.-M. DALIN (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed