Skip to main content Accessibility help
×
Home

Structured surveillance of infectious intestinal disease in pre-school children in the community: ‘The Nappy Study’

  • M. ITURRIZA-GÓMARA (a1), A. J. ELLIOT (a2), C. DOCKERY (a1), D. M. FLEMING (a2) and J. J. GRAY (a1)...

Summary

The incidence and causes of infectious intestinal disease (IID) in children aged <5 years presenting to general practitioners (GPs) were estimated. During a 12-month period, soiled nappies were collected from children presenting with symptoms suggestive of IID in a network of 65 GPs located across England. Molecular methods were used to detect a range of enteric pathogens including viruses, bacteria and parasites. Genotyping was performed on rotavirus and norovirus isolates. A total of 583 nappies were collected from 554 children; a pathogen was detected in 361 (62%) specimens. In the 43 practices 1584 new episodes of IID were recorded in a population averaging 19774; the specimen capture rate was 28%. IID incidence peaked during March and April. Norovirus (24·5%), rotavirus (19·0%) and sapovirus (12·7%) were most commonly detected, and mixed infections were detected in 11·7% of cases. Strain characterization revealed G1P[8] (65·8%), G4P[4] (8·1%) and G9P[8] (8·1%) as the most common rotavirus genotypes, similar to the UK national distribution. GII-3 (42·9%) and GII-4 (39·7%) were the most common norovirus genotypes; this was significantly different (P<0·005) to the national distribution.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Structured surveillance of infectious intestinal disease in pre-school children in the community: ‘The Nappy Study’
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Structured surveillance of infectious intestinal disease in pre-school children in the community: ‘The Nappy Study’
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Structured surveillance of infectious intestinal disease in pre-school children in the community: ‘The Nappy Study’
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr M. Iturriza-Gómara, Deputy Head, Enteric Virus Unit, Health Protection Agency Centre for Infections, 61 Colindale Avenue, London NW9 5HT, UK. (Email: Miren.Iturriza@hpa.org.uk)

References

Hide All
1. de Wit, MA, et al. Gastroenteritis in sentinel general practices, The Netherlands. Emerging Infectious Diseases 2001; 7: 8291.
2. de Wit, MA, et al. Etiology of gastroenteritis in sentinel general practices in The Netherlands. Clinical Infectious Diseases 2001; 33: 280288.
3. Amar, CF, Dear, PH, McLauchlin, J. Detection and identification by real time PCR/RFLP analyses of Cryptosporidium species from human faeces. Letters in Applied Microbiology 2004; 38: 217222.
4. Amar, CF, et al. Detection of viral, bacterial, and parasitological RNA or DNA of nine intestinal pathogens in fecal samples archived as part of the english infectious intestinal disease study: assessment of the stability of target nucleic acid. Diagnostic Molecular Pathology 2005; 14: 9096.
5. Amar, CF, et al. Detection by PCR of eight groups of enteric pathogens in 4627 faecal samples: re-examination of the English case-control Infectious Intestinal Disease Study (1993–1996). European Journal of Clinical Microbiology & Infectious Diseases 2007; 26: 311323.
6. Simpson, R, et al. Infantile viral gastroenteritis: on the way to closing the diagnostic gap. Journal of Medical Virology 2003; 70: 258262.
7. Iturriza, Gomara M, et al. Structured surveillance of infantile gastroenteritis in East Anglia, UK: incidence of infection with common viral gastroenteric pathogens. Epidemiology and Infection 2008; 136: 2333.
8. Djuretic, T, et al. An estimate of the proportion of diarrhoeal disease episodes seen by general practitioners attributable to rotavirus in children under 5 y of age in England and Wales. Acta Paediatrica (Suppl.) 1999; 88: 3841.
9. Birmingham Research Unit of the Royal College of General Practitioners. Weekly Returns Service Annual Report, 2006.
10. Boom, R, et al. Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology 1990; 28: 495503.
11. Iturriza-Gómara, M, et al. Comparison of specific and random priming in the reverse transcriptase polymerase chain reaction for genotyping group A rotaviruses. Journal of Virological Methods 1999; 78: 93103.
12. Iturriza-Gomara, M, Kang, G, Gray, J. Rotavirus genotyping: keeping up with an evolving population of human rotaviruses. Journal of Clinical Microbiology 2004; 31: 259265.
13. Kageyama, T, et al. Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription–PCR. Journal of Clinical Microbiology 2003; 41: 15481557.
14. Gallimore, CI, et al. Inter-seasonal diversity of norovirus genotypes: emergence and selection of virus variants. Archives of Virology 2007; 152: 12951303.
15. Svraka, S, et al. Etiological role of viruses in outbreaks of acute gastroenteritis in The Netherlands from 1994 through 2005. Journal of Clinical Microbiology 2007; 45: 13891394.
16. Gallimore, CI, Richards, AF, Gray, JJ. Molecular diversity of noroviruses associated with outbreaks on cruise ships: comparison with strains circulating within the UK. Communicable Disease and Public Health 2003; 6: 285293.
17. Gallimore, CI, et al. Diversity of Noroviruses cocirculating in the North of England from 1998 to 2001. Journal of Clinical Microbiology 2004; 42: 13961401.
18. Lopman, B, et al. Increase in viral gastroenteritis outbreaks in Europe and epidemic spread of new norovirus variant. Lancet 2004; 363: 682688.
19. Allen, DJ, et al. Analysis of amino acid variation in the P2 domain of the GII-4 Norovirus VP1 protein reveals putative variant-specific epitopes. PLoS ONE 2008; 3: e1485.
20. de Wit, MA, et al. A comparison of gastroenteritis in a general practice-based study and a community-based study. Epidemiology and Infection 2001; 127: 389397.
21. Soriano-Gabarro, M, et al. Burden of rotavirus disease in European Union countries. Pediatric Infectious Disease Journal 2006; 25 (1 Suppl.): S7S11.
22. Harris, JP, et al. Evaluating rotavirus vaccination in England and Wales. Part I. Estimating the burden of disease. Vaccine 2007; 25: 39623970.
23. Jit, M, et al. Estimating the number of deaths with rotavirus as a cause in England and Wales. Human Vaccines 2007; 3: 2326.
24. Lorgelly, PK, et al. Infantile gastroenteritis in the community: a cost-of-illness study. Epidemiology and Infection 2008; 136: 3443.
25. Vesikari, T, et al. Efficacy of human rotavirus vaccine against rotavirus gastroenteritis during the first 2 years of life in European infants: randomised, double-blind controlled study. Lancet 2007; 370: 17571763.
26. Vesikari, T, et al. Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine. New England Journal of Medicine 2006; 354: 2333.

Keywords

Structured surveillance of infectious intestinal disease in pre-school children in the community: ‘The Nappy Study’

  • M. ITURRIZA-GÓMARA (a1), A. J. ELLIOT (a2), C. DOCKERY (a1), D. M. FLEMING (a2) and J. J. GRAY (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed