Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-08T00:59:25.871Z Has data issue: false hasContentIssue false

Specific detection of Salmonella enterica serotype Enteritidis using the polymerase chain reaction

Published online by Cambridge University Press:  15 May 2009

K. A. Lampel
Affiliation:
Division of Molecular Biological Research and Evaluation, Washington D.C. 20204, USA
S. P. Keasler
Affiliation:
Division of Molecular Biological Research and Evaluation, Washington D.C. 20204, USA
D. E. Hanes
Affiliation:
Division of Virulence Assessment, U.S. Food and Drug Administration, Washington D.C. 20204, USA
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An assay was developed for the specific detection of Salmonella enterica serotype Enteritidis, using a novel application of the polymerase chain reaction (PCR). This PCR assay is based on the mismatch amplification mutation assay, an allele-specific reaction, and can discriminate Enteritidis from all other salmonella. PCR primers were selected to amplify a 351-base pair (bp) DNA fragment from the salmonella plasmid virulence A (spvA) gene of Enteritidis. A single base difference at position 272 is present between the nucleotide sequence of the spvA gene of Enteritidis and other salmonellae. The downstream PCR primer, that encompasses position 272 of the Enteritidis spvA gene, was designed to contain a single base mismatch at the penultimate position, resulting in a l-base mismatch with Enteritidis and a 2-base mismatch with other salmonellae that harbour the virulence plasmid. The upstream primer was completely homologous with the region immediately 5′ to the spvA gene. When these primers were used and the annealing and extension reactions were performed at the same temperature, the PCR assay was specific for Enteritidis; no PCR product was detected for 40 other serotypes and 28 different genera examined. In pure culture, 120 colony forming units (c.f.u.) could be detected; a PCR product was observed from template derived from a 5 h enrichment broth culture of chicken seeded with 1 c.f.u. per gram of Enteritidis. This PCR assay is specific, reproducible, and less time consuming than the standard bacteriological methods used to detect Enteritidis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

1.Centers for Disease Control. Outbreaks of Salmonella enteritidis gastroenteritis – California, 1993. MMWR 1993; 42: 793–7.Google Scholar
2.Centers for Disease Control. Update: Salmonella enteritidis infections and shell eggs – United States. MMWR 1990; 39: 909–12.Google Scholar
3.Centres for Disease Control. Outbreak of Salmonella enteritidis infection associated with the consumption of raw shell eggs. MMWR 1992; 41: 369–72.Google Scholar
4.Hubert, B, Dehaumont, P, Lelard, G, Grimont, PAD, Bouvent, PH. Les infections à Salmonella enteritidis: Situation en 1990. Bull Epidémiol Hebdomadaire 1991; 25: 103–5.Google Scholar
5.Binkin, N, Scuderi, G, Novaco, F et al. Egg-related Salmonella enteritidis, Italy, 1991. Epidemiol Infect 1993; 110: 227–37.CrossRefGoogle ScholarPubMed
6.Rodrigue, DC, Tauxe, RV, Rowe, B. International increase in Salmonella enteritidis: a new pandemic? Epidemiol Infect 1990; 105: 21–7.CrossRefGoogle ScholarPubMed
7.Baird, GD, Manning, EJ, Jones, PW. Evidence for related virulence sequences in plasmids of Salmonella dublin and Salmonella typhimurium. J Gen Microbiol 1985; 131: 1815–23.Google ScholarPubMed
8.Gulig, PA, Curtis, R III., Plasmid associated virulence of Salmonella typhimurium. Infect Immun 1987; 55: 2891–901.CrossRefGoogle ScholarPubMed
9.Hovi, M, Sukupolvi, S, Edwards, MF, Rhen, M. Plasmid-associated virulence of Salmonella enteritidis. Microbial Pathogen 1988; 4: 385–91.CrossRefGoogle ScholarPubMed
10.Williamson, CM, Baird, GD, Manning, EJ. A common virulence region on plasmids from eleven serotypes of Salmonella. J Gen Microbiol 1988; 134: 975–82.Google Scholar
11.Gulig, PA, Caldwell, AL, Chiodo, VA. Identification, genetic analysis and DNA sequence of a 7·8-kb virulence region of the Salmonella typhimurium virulence plasmid. Mol Microbiol 1992; 6: 1395–411.CrossRefGoogle Scholar
12.Norel, F, Pisano, MR, Nicoli, J, Popoff, MY. Nucleotide sequence of the plasmid-borne virulence gene mkf A encoding a 28 kDa polypeptide from Salmonella typhimurium. Res Microbiol 1989; 140: 263–5.CrossRefGoogle Scholar
13.Taira, S, Rhen, M. Molecular organization of genes constituting the virulence determinant on the Salmonella typhimurium 96 kilobase pair plasmid. FEBS Lett 1989; 257: 274–8.CrossRefGoogle ScholarPubMed
14.Taira, S, Rhen, M. Nucleotide sequence of mkaD, a virulence-associated gene of Salmonella typhimurium containing variable and constant regions. Gene 1990; 93: 147–50.CrossRefGoogle ScholarPubMed
15.Krause, M, Roudier, C, Fierer, J, Harwood, J, Guiney, D. Molecular analysis of the virulence locus of the Salmonella dublin plasmid pSDL2. Mol Microbiol 1991; 5: 307–16.CrossRefGoogle ScholarPubMed
16.Cha, RS, Zarbl, H, Keohavong, P, Thilly, WG. Mismatch amplification mutation assay (MAMA): application to the c-H-ras gene. PCR Methods Applic 1992; 2: 1420.Google Scholar
17.Birnboim, HC, Doly, J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 1979; 7: 1513–23.CrossRefGoogle ScholarPubMed
18.Sanger, R, Nicklen, S, Coulson, AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74: 5463–7.CrossRefGoogle ScholarPubMed
19.Mill, JF, Mearow, KM, Purohit, HJ, Haleem-Smith, H, King, R, Freese, E. Cloning and functional characterization of the rat glutamine synthetase gene. Mol Brain Res 1991; 9: 197207.CrossRefGoogle ScholarPubMed
20.Devereux, J, Haeberli, P, Smithies, O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 1984; 12: 387–95.CrossRefGoogle ScholarPubMed
21.Feng, P. Commercial assay systems for detecting foodborne Salmonella: a review. J Food Prot 1992; 55: 927–34.Google Scholar
22.Swaminathan, B, Feng, P. Rapid Detection of food-borne pathogenic bacteria. Annu Rev Microbiol 1994; 48: 401–26.CrossRefGoogle ScholarPubMed
23.Food and Drug Administration. Bacteriological analytical manual, 7th ed. Arlington, VA: AOAC International, 1992: 5169.Google Scholar
24.van der Zee, H. Conventional methods for the detection and isolation of Salmonella enteritidis. Int J Food Microbiol 1994; 21: 41–6.CrossRefGoogle ScholarPubMed
25.Keller, LH, Benson, CE, Garcia, V, Nocks, E, Battenfelder, P, Eckroade, RJ. Monoclonal antibody-based detection system for Salmonella enteritidis. Avian Dis 1993; 37: 501–7.CrossRefGoogle ScholarPubMed
26.Thorns, CJ, McLarem, IM, Sojka, MG. The use of latex particle agglutination to specifically detect Salmonella enteritidis. Int J Food Microbiol 1994; 21: 4753.CrossRefGoogle ScholarPubMed
27.Helmuth, R, Schroeter, A. Molecular typing methods for S. enteritidis. Int J Food Microbiol 1994; 21: 6977.CrossRefGoogle ScholarPubMed
28.Martinetti, G, Altwegg, M. rRNA gene restriction patterns and plasmid analysis as a tool for typing Salmonella enteritidis. Res Microbiol 1990; 141: 1151–62.Google Scholar
29.Singer, JT, Opitz, HM, Gershman, M, Hall, MM, Muniz, IG, Shobha, VR. Molecular characterization of Salmonella enteritidis from Maine poultry and poultry farm environments. Avian Dis 1992; 36: 324–33.CrossRefGoogle ScholarPubMed
30.Hanes, DE, Koch, WH, Miliotis, MD, Lampel, KA. DNA probe for detecting Salmonella enteritidis in food. Moll Cell Probes 1995; 9: 918.Google Scholar
31.Way, JS, Josephson, KL, Pillai, SD et al. Specific detection of Salmonella spp. by multiplex polymerase chain reaction. Appl Environ Microbiol 1993; 59: 1473–9.CrossRefGoogle ScholarPubMed
32.Pillai, SD, Ricke, SC, Nisbet, DJ et al. A rapid method for screening Salmonella typhimurium in a chicken cecal microbial consortium using gene amplification. Avian Dis 1994; 38: 598604.Google Scholar
33.Kwok, S, Kellogg, DE, McKinney, N et al. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type I model studies. Nucleic Acids Res 1990; 18: 9991005.Google Scholar
34.Stanley, J, Burnens, AP, Threlfall, EJ, Chowdry, N, Goldsworthy, M. Genetic relationships among strains of Salmonella enteritidis in a national epidemic in Switzerland. Epidemiol Infect 1992; 108: 213–20.CrossRefGoogle Scholar
35.Nastasi, A, Villafrate, MR, Mammina, C et al. Molecular study on Salmonella enteritidis strains from a nosocomial gastroenteritis outbreak. Boll Ist Sieroter Milan 1988; 67: 43–8.Google Scholar
36.Rankin, SC, Benson, CE, Platt, DJ. The distribution of serotype-specific plasmids among different subgroups of strains of Salmonella enterica serotype Enteritidis: characterization of molecular variants by restriction enzyme fragmentation patterns. Epidemiol Infect 1995; 114: 2540.CrossRefGoogle ScholarPubMed
37.Dorn, CR, Silapanuntakul, R, Angrick, EJ, Shipman, LD. Plasmid analysis and epidemiology of Salmonella enteritidis infection in three commercial layer flocks. Avian Dis 1992; 36: 884–51.CrossRefGoogle ScholarPubMed
38.Maurelli, AT, Lampel, KA. Shigella. In: Hui, YH, Gorham, JR, Murrell, KD, Cliver, DO, eds. Foodborne disease handbook, vol I. New York: Marcel Dekker, Inc., 1994: 319–44.Google Scholar
39.Hill, WE, Keasler, SP, Trucksess, MW, Feng, P, Kaysner, CA, Lampel, KA. Polymerase chain reaction identification of Vibrio vulnificus in artificially contaminated oysters. Appl Environ Microbiol 1991; 57: 707–11.CrossRefGoogle ScholarPubMed
40.Victor, P, Gannon, J, King, RK, Kim, JY, Golsteyn-Thomas, EJ. Rapid and sensitive method for detection of Shiga-like toxin-producing Escherichia coli in ground beef using the polymerase chain reaction. Appl Environ Microbiol 1992; 58: 3809–15.Google Scholar
41.Lampel, KA, Jagow, JA, Trucksess, M, Hill, WE. Polymerase chain reaction for detection of invasive Shigella flexneri in food. Appl Environ Microbiol 1990; 56: 1536–40.CrossRefGoogle ScholarPubMed
42.Wegmuller, B, Luthu, J, Candrian, U. Direct polymerase chain reaction detection of Campylobacter jejuni and Campylobacter coli in raw milk and diary products. Appl Environ Microbiol 1993; 57: 2161–5.CrossRefGoogle Scholar
43.Kapperud, G, Gustavsen, S, Hellesnes, I. Outbreak of Salmonella typhimurium infection traced to contaminated chocolate and caused by a strain lacking the 60-megadalton virulence plasmid. J Clin Microbiol 1990; 28: 2597–601.CrossRefGoogle ScholarPubMed