Skip to main content Accessibility help
×
Home

Species and antimicrobial susceptibility testing of coagulase-negative staphylococci in periprosthetic joint infections

  • J. Lourtet-Hascoët (a1), M. P. Félicé (a1), A. Bicart-See (a1), A. Bouige (a1), G. Giordano (a2) and E. Bonnet (a3)...

Abstract

The objective was to evaluate the distribution of coagulase-negative staphylococci (CNS) involved in periprosthetic-joint infections (PJIs) and to describe their susceptibility profile to antibiotics. We conducted a multicentre retrospective study in France, including 215 CNS PJIs between 2011 and 2015. CNS PJIs involved knees in 54% of the cases, hips in 39%, other sites in 7%. The distribution of the 215 strains was: Staphylococcus epidermidis 129 (60%), Staphylococcus capitis 24 (11%), Staphylococcus lugdunensis 21 (10%), Staphylococcus warneri 8 (4%), Staphylococcus hominis 7 (3%), Staphylococcus haemolyticus 7 (3%). More than half of the strains (52.1%) were resistant to methicillin, 40.9% to ofloxacin, 20% to rifampicin. The species most resistant to antibiotics were S. hominis, S. haemolyticus, S. epidermidis, with 69.7% of the strains resistant to methicillin and 30% simultaneously resistant to clindamycin, cotrimoxazole, ofloxacin and rifampicin. No strain was resistant to linezolid or daptomycin. In this study on CNS involved in PJIs, resistance to methicillin is greater than 50%. S. epidermidis is the most frequent and resistant species to antibiotics. Emerging species such S. lugdunensis, S. capitis and Staphylococcus caprae exhibit profiles more sensitive to antibiotics. The antibiotics most often active in vitro are linezolid and daptomycin.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Species and antimicrobial susceptibility testing of coagulase-negative staphylococci in periprosthetic joint infections
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Species and antimicrobial susceptibility testing of coagulase-negative staphylococci in periprosthetic joint infections
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Species and antimicrobial susceptibility testing of coagulase-negative staphylococci in periprosthetic joint infections
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence: J. Lourtet-Hascoët, E-mail: julielourtet@hotmail.com

References

Hide All
1.Zimmerli, W, Trampuz, A and Ochsner, PE (2004) Prosthetic-joint infections. New England Journal of Medicine 351(16), 16451654.
2.Darouiche, RO (2004) Treatment of infections associated with surgical implants. New England Journal of Medicine 350(14), 14221429.
3.Stefani, S and Varaldo, PE (2003) Epidemiology of methicillin-resistant staphylococci in Europe. Clinical Microbiology and Infection 9(12), 11791186.
4.Becker, K, Heilmann, C and Peters, G (2014) Coagulase-negative staphylococci. Clinical Microbiology Reviews 27(4), 870926.
5.Schoenfelder, SM et al. (2010) Success through diversity – how Staphylococcus epidermidis establishes as a nosocomial pathogen. International Journal of Medical Microbiology 300(6), 380386.
6.Osmon, DR et al. (2012) Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clinical Infectious Diseases 56(1), e1e25.
7.Parvizi, J, Gehrke, T and Chen, AF (2013) Proceedings of the International Consensus on Periprosthetic Joint Infection. Bone and Joint Journal 95-B(11), 14501452.
8.Bonnet, R et al. (eds). (2013) Comite de l'antibiogramme de la societe francaise de microbiologie recommandations.
9.Dupont, M and Dutronc, H (2009) T. P. Recommandations de pratique clinique Infections ostéo-articulaires sur matériel (prothèse, implant, ostéosynthèse).
10.Raad, I (1998) Intravascular-catheter-related infections. Lancet Infectious Diseases 351(9106), 893898.
11.Chokr, A et al. (2006) Correlation between biofilm formation and production of polysaccharide intercellular adhesin in clinical isolates of coagulase-negative staphylococci. International Journal of Medical Microbiology 296(6), 381388.
12.Rogers, KL, Fey, PD and Rupp, ME (2009) Coagulase-negative staphylococcal infections. Infectious Diseases Clinics of North America 23(1), 7398.
13.McCann, MT, Gilmore, BF and Gorman, SP (2008) Staphylococcus epidermidis device-related infections: pathogenesis and clinical management. Journal of Pharmacy and Pharmacology 60(12), 15511571.
14.Pulido, L et al. (2008) Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clinical Orthopaedic and Related Research 466(7), 17101715.
15.Titecat, M et al. (2013) Bacterial epidemiology of osteoarticular infections in a referent center: 10-year study. Orthopaedic and Traumatology Surgery and Research 99(6), 653658.
16.Tsukayama, DT, Estrada, R and Gustilo, RB (1996) Infection after total hip arthroplasty. A study of the treatment of one hundred and six infections. Journal of Bone and Joint Surgery: America 78(4), 512523.
17.Hellmark, B et al. (2009) Antibiotic susceptibility among Staphylococcus epidermidis isolated from prosthetic joint infections with special focus on rifampicin and variability of the rpoB gene. Clinical Microbiology and Infection 15(3), 238244.
18.Sharma, D et al. (2008) Microbiology of infected arthroplasty: implications for empiric peri-operative antibiotics. Journal of Orthopaedic Surgery (Hong Kong) 16(3), 339342.
19.Cremniter, J et al. (2010) Decreased susceptibility to teicoplanin and vancomycin in coagulase-negative Staphylococci isolated from orthopedic-device-associated infections. Journal of Clinical Microbiology 48(4), 14281431.
20.Hamad, T et al. (2015) Antibiotic susceptibility among Staphylococcus epidermidis isolated from prosthetic joint infections, with focus on doxycycline. Acta pathologica, Microbiologica, et Immunologica Scandinavica 123(12), 10551060.
21.Decousser, JW et al. (2015) Susceptibility trends including emergence of linezolid resistance among coagulase-negative staphylococci and meticillin-resistant Staphylococcus aureus from invasive infections. International Journal of Antimicrobial Agents 46, 622630.
22.Dubost, JJ et al. (2014) Three-decade trends in the distribution of organisms causing septic arthritis in native joints: single-center study of 374 cases. Joint Bone Spine 81(5), 438440.
23.Lora-Tamayo, J et al. (2013) A large multicenter study of methicillin-susceptible and methicillin-resistant Staphylococcus aureus prosthetic joint infections managed with implant retention. Clinical Infectious Diseases 56(2), 182194.
24.Bogut, A et al. (2014) Infectious prosthetic hip joint loosening: bacterial species involved in its aetiology and their antibiotic resistance profiles against antibiotics recommended for the therapy of implant-associated infections. New Microbiology 37(2), 209218.
25.Namvar, AE et al. (2014) Clinical characteristics of Staphylococcus epidermidis: a systematic review. GMS Hygiene and Infection Control 9(3), Doc23, 117125.
26.Courvalin, P (2012) LR. ANTIBIOGRAMME.;1:800.
27.Molina-Manso, D et al. (2013) In vitro susceptibility to antibiotics of staphylococci in biofilms isolated from orthopaedic infections. International Journal of Antimicrobial Agents 41(6), 521523.
28.Pal, N and Ayyagari, A (1989) Species identification & methicillin resistance of coagulase negative staphylococci from clinical specimens. Indian Journal of Medical Research 89, 300305.
29.Oren, I and Merzbach, D (1990) Clinical and epidemiological significance of species identification of coagulase-negative staphylococci in a microbiological laboratory. Israelian Journal of Medical Science 26(3), 125128.
30.Arciola, CR et al. (2006) Prevalence and antibiotic resistance of 15 minor staphylococcal species colonizing orthopedic implants. International Journal of Artificial Organs 29(4), 395401.
31.Wang, SM et al. (1999) Staphylococcus capitis bacteremia of very low birth weight premature infants at neonatal intensive care units: clinical significance and antimicrobial susceptibility. Journal of Microbiology Immunology and Infection 32(1), 2632.
32.Seng, P et al. (2014) Staphylococcus caprae bone and joint infections: a re-emerging infection? Clinical Microbiology and Infection 20(12), O10528.
33.Allignet, J et al. (1999) Tracking adhesion factors in Staphylococcus caprae strains responsible for human bone infections following implantation of orthopaedic material. Microbiology 145(Pt 8):20332042.
34.Herchline, TE and Ayers, LW (1991) Occurrence of Staphylococcus lugdunensis in consecutive clinical cultures and relationship of isolation to infection. Journal of Clinical Microbiology 29(3), 419421.
35.Sampathkumar, P, Osmon, DR and Cockerill, FR III (2000) Prosthetic joint infection due to Staphylococcus lugdunensis. Mayo Clinic Proceedings 75(5), 511512.
36.Shah, NB et al. (2010) Laboratory and clinical characteristics of Staphylococcus lugdunensis prosthetic joint infections. Journal of Clinical Microbiology 48(5), 16001603.
37.Bassetti, M et al. (2014) Current antibiotic management of prosthetic joint infections in Italy: the ‘udine strategy’. The Journal of Antimicrobial Chemotherapy 69(suppl. 1), i41i45.
38.Flanagan, S et al. (2015) Nonclinical and pharmacokinetic assessments to evaluate the potential of tedizolid and linezolid to affect mitochondrial function. Antimicrobial Agents and Chemotherapy 59(1), 178185.

Keywords

Species and antimicrobial susceptibility testing of coagulase-negative staphylococci in periprosthetic joint infections

  • J. Lourtet-Hascoët (a1), M. P. Félicé (a1), A. Bicart-See (a1), A. Bouige (a1), G. Giordano (a2) and E. Bonnet (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed