Skip to main content Accessibility help
×
Home

Serotype-specific differences in short- and longer-term mortality following invasive pneumococcal disease

  • G. J. HUGHES (a1), L. B. WRIGHT (a2), K. E. CHAPMAN (a2), D. WILSON (a2) and R. GORTON (a2)...

Summary

Invasive pneumococcal disease (IPD), caused by infection with Streptococcus pneumoniae, has a substantial global burden. There are over 90 known serotypes of S. pneumoniae with a considerable body of evidence supporting serotype-specific mortality rates immediately following IPD. This is the first study to consider the association between serotype and longer-term mortality following IPD. Using enhanced surveillance data from the North East of England we assessed both the short-term (30-day) and longer-term (⩽7 years) independent adjusted associations between individual serotypes and mortality following IPD diagnosis using logistic regression and extended Cox proportional hazards models. Of the 1316 cases included in the analysis, 243 [18·5%, 95% confidence interval (CI) 16·4–20·7] died within 30 days of diagnosis. Four serotypes (3, 6A, 9N, 19 F) were significantly associated with overall increased 30-day mortality. Effects were observable only for older adults (⩾60 years). After extension of the window to 12 months and 36 months, one serotype was associated with significantly increased mortality at 12 months (19 F), but no individual serotypes were associated with increased mortality at 36 months. Two serotypes had statistically significant hazard ratios (HR) for longer-term mortality: serotype 1 for reduced mortality (HR 0·51, 95% CI 0·30–0·86) and serotype 9N for increased mortality (HR 2·30, 95% CI 1·29–4·37). The association with serotype 9N was no longer observed after limiting survival analysis to an observation period starting 30 days after diagnosis. This study supports the evidence for associations between serotype and short-term (30-day) mortality following IPD and provides the first evidence for the existence of statistically significant associations between individual serotypes and longer-term variation in mortality following IPD.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Serotype-specific differences in short- and longer-term mortality following invasive pneumococcal disease
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Serotype-specific differences in short- and longer-term mortality following invasive pneumococcal disease
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Serotype-specific differences in short- and longer-term mortality following invasive pneumococcal disease
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Author for correspondence: Dr R. Gorton, Public Health England North East, Citygate, Gallowgate, Newcastle upon Tyne, NE1 4WH, UK. (Email: russell.gorton@phe.gov.uk).

References

Hide All
1. O'Brien, KL, et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 2009; 374: 893902.
2. Drijkoningen, JJC, Rohde, GGU. Pneumococcal infection in adults: burden of disease. Clinical Microbiology and Infection 2014; 20 (Suppl. 5): 4551.
3. Hausdorff, WP, Feikin, DR, Klugman, KP. Epidemiological differences among pneumococcal serotypes. Lancet Infectious Diseases 2005; 5: 8393.
4. van Hoek, AJ, et al. Effect of serotype on focus and mortality of invasive pneumococcal disease: coverage of different vaccines and insight into non-vaccine serotypes. PLoS One 2012; 7: e39150.
5. Harboe, ZB, et al. Pneumococcal serotypes and mortality following invasive pneumococcal disease: a population-based cohort study. PLoS Medicine 2009; 6: e1000081.
6. Martens, P, et al. Serotype-specific mortality from invasive Streptococcus pneumoniae disease revisited. BMC Infectious Diseases 2004; 4: 21.
7. Weinberger, DM, et al. Association of serotype with risk of death due to pneumococcal pneumonia: a meta-analysis. Clinical Infectious Diseases 2010; 51: 692699.
8. Grabenstein, JD, Musey, LK. Differences in serious clinical outcomes of infection caused by specific pneumococcal serotypes among adults. Vaccine 2014; 32: 23992405.
9. Navarro-Torné, A, et al. Risk factors for death from invasive pneumococcal disease. Emerging Infectious Diseases 2015; 21: 417425.
10. Sandvall, B, Rueda, AM, Musher, DM. Long-term survival following pneumococcal pneumonia. Clinical Infectious Diseases 2013; 56: 11451146.
11. Roed, C, et al. Long-term mortality in patients diagnosed with meningococcal disease: a Danish nationwide cohort study. PLoS One 2010; 5: e9662.
12. Wang, HE, et al. Long-term mortality after community-acquired sepsis: a longitudinal population-based cohort study. BMJ Open 2014; 4: e004283.
13. Office for National Statistics. Regional profiles: key statistics – North East, August 2012 (http://www.ons.gov.uk/ons/dcp171780_228225.pdf). Accessed 6 January 2015.
14. Office for National Statistics. General health in England and Wales, 2011 and comparison with 2001 (http://www.ons.gov.uk/ons/dcp171776_296871.pdf). Accessed 6 January 2015.
15. McLennan, D, et al. The English indices of deprivation 2010 (https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/6320/1870718.pdf). Accessed 6 January 2015.
16. Chapman, KE, Wilson, D, Gorton, R. Serotype dynamics of invasive pneumococcal disease post-PCV7 and pre-PCV13 introduction in North East England. Epidemiology and Infection 2013; 141:344352.
17. Chapman, KE, Wilson, D, Gorton, R. Invasive pneumococcal disease and socioeconomic deprivation: a population study from the North East of England. Journal of Public Health (Oxford) 2013; 35: 558569.
18. Hosmer, DW, Lemeshow, S. Applied Logistic Regression. New York: John Wiley & Sons, 2001.

Keywords

Type Description Title
WORD
Supplementary materials

Hughes supplementary material
Hughes supplementary material

 Word (85 KB)
85 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed