Skip to main content Accessibility help
×
Home

Serological comparison of antibodies to avian influenza viruses, subtypes H5N2, H6N1, H7N3 and H7N9 between poultry workers and non-poultry workers in Taiwan in 2012

  • S. Y. HUANG (a1), J. R. YANG (a1), Y. J. LIN (a1), C. H. YANG (a1), M. C. CHENG (a2), M. T. LIU (a1), H. S. WU (a1) (a3) and F. Y. CHANG (a1) (a4)...

Summary

In Taiwan, avian influenza virus (AIV) subtypes H5N2, H6N1 and H7N3 have been identified in domestic poultry, and several strains of these subtypes have become endemic in poultry. To evaluate the potential of avian-to-human transmission due to occupational exposure, an exploratory analysis of AIV antibody status in poultry workers was conducted. We enrolled 670 poultry workers, including 335 live poultry vendors (LPVs), 335 poultry farmers (PFs), and 577 non-poultry workers (NPWs). Serum antibody titres against various subtypes of viruses were analysed and compared. The overall seropositivity rates in LPVs and PFs were 2·99% (10/335) and 1·79% (6/335), respectively, against H5N2; and 0·6% (2/335) and 1·19% (4/335), respectively, for H7N3 virus. Of NPWs, 0·35% (2/577) and 0·17% (1/577) were seropositive for H5N2 and H7N3, respectively. Geographical analysis revealed that poultry workers whose workplaces were near locations where H5N2 outbreaks in poultry have been reported face greater risks of being exposed to viruses that result in elevated H5N2 antibody titres. H6N1 antibodies were detected in only one PF, and no H7N9 antibodies were found in the study subjects. Subclinical infections caused by H5N2, H6N1 and H7N3 viruses were thus identified in poultry workers in Taiwan. Occupational exposure is associated with a high risk of AIV infection, and the seroprevalence of particular avian influenza strains in humans reflects the endemic strains in poultry in this region.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Serological comparison of antibodies to avian influenza viruses, subtypes H5N2, H6N1, H7N3 and H7N9 between poultry workers and non-poultry workers in Taiwan in 2012
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Serological comparison of antibodies to avian influenza viruses, subtypes H5N2, H6N1, H7N3 and H7N9 between poultry workers and non-poultry workers in Taiwan in 2012
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Serological comparison of antibodies to avian influenza viruses, subtypes H5N2, H6N1, H7N3 and H7N9 between poultry workers and non-poultry workers in Taiwan in 2012
      Available formats
      ×

Copyright

Corresponding author

* Author for correspondence: Dr. F. Y. Chang, Centers for Disease Control, No. 6, Linsen S. Rd, Taipei, 10050, Taiwan, ROC, (Email: fychang@ndmctsgh.edu.tw) [F. Y. Chang] (Email: wuhs@cdc.gov.tw) [H. S. Wu]

References

Hide All
1. Fouchier, RA, et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. Journal of Virology 2005; 79: 28142822.
2. Tong, S, et al. New World bats harbor diverse influenza A viruses. PLoS Pathogens 2013; 9: e1003657.
3. Cox, NJ, Subbarao, K. Global epidemiology of influenza: past and present. Annual Review of Medicine 2000; 51: 407421.
4. Nicholson, KG, Wood, JM, Zambon, M. Influenza. Lancet 2003; 362: 17331745.
5. Claas, EC, et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 1998; 351: 472477.
6. Wei, SH, et al. Human infection with avian influenza A H6N1 virus: an epidemiological analysis. Lancet Respiratory Medicine 2013; 1: 771778.
7. Chen, H, et al. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet 2014; 383: 714721.
8. Tweed, SA, et al. Human illness from avian influenza H7N3, British Columbia. Emerging Infectious Diseases 2004; 10: 21962199.
9. Van Kerkhove, MD, et al. Highly pathogenic avian influenza (H5N1): pathways of exposure at the animal-human interface, a systematic review. PLoS ONE 2011; 6: e14582.
10. Bridges, CB, et al. Risk of influenza A (H5N1) infection among poultry workers, Hong Kong, 1997–1998. Journal of Infectious Diseases 2002; 185: 10051010.
11. Koopmans, M, et al. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 2004; 363: 587593.
12. Kayali, G, et al. Evidence of previous avian influenza infection among US turkey workers. Zoonoses and Public Health 2010; 57: 265272.
13. Cheng, MC, et al. Isolation and characterization of potentially pathogenic H5N2 influenza virus from a chicken in Taiwan in 2008. Avian Diseases 2010; 54: 885893.
14. Lee, MS, et al. Genetic and pathogenic characterization of H6N1 avian influenza viruses isolated in Taiwan between 1972 and 2005. Avian Diseases 2006; 50: 561571.
15. OIE. Low pathogenic avian influenza (poultry), Chinese Taipei (Follow-up Report 1: 22 April 2011) (http://www.oie.int/wahis_2/temp/reports/en_fup_0000010506_20110422_133554.pdf). Accessed 9 December 2014.
16. OIE. Exceptional epidemiological events (http://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Countryreports). Accessed 9 December 2014.
17. OIE. Highly pathogenic avian influenza, Chinese Taipei (Follow-up Report 2: 19 March 2012) (http://www.oie.int/wahis_2/temp/reports/en_fup_0000011766_20120319_182044.pdf). Accessed 9 Dec 2014.
18. Wu, HS, et al. Influenza A(H5N2) virus antibodies in humans after contact with infected poultry, Taiwan, 2012. Emerging Infectious Diseases 2014; 20: 857860.
19. WHO. Manual for the laboratory diagnosis and virological surveillance of influenza (http://whqlibdoc.who.int/publications/2011/9789241548090_eng.pdf). Accessed 24 April 2014.
20. Lee, CC, et al. Emergence and evolution of avian H5N2 influenza viruses in chickens in Taiwan. Journal of Virology 2014; 88: 56775686.
21. Meijer, A, et al. Measurement of antibodies to avian influenza virus A(H7N7) in humans by hemagglutination inhibition test. Journal of Virological Methods 2006; 132: 113120.
22. Gray, GC, et al. Evidence for avian influenza A infections among Iowa's agricultural workers. Influenza and Other Respiratory Viruses 2008; 2: 6169.
23. Myers, KP, et al. Infection due to 3 avian influenza subtypes in United States veterinarians. Clinical Infectious Diseases 2007; 45: 49.
24. Ogata, T, et al. Human H5N2 avian influenza infection in Japan and the factors associated with high H5N2-neutralizing antibody titer. Journal of Epidemiology 2008; 18: 160166.
25. Beare, AS, Webster, RG. Replication of avian influenza viruses in humans. Archives of Virology 1991; 119: 3742.
26. Kayali, G, et al. Testing human sera for antibodies against avian influenza viruses: horse RBC hemagglutination inhibition vs. microneutralization assays. Journal of Clinical Virology 2008; 43: 7378.
27. Corti, D, et al. Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. Journal of Clinical Investigation 2010; 120: 16631673.
28. Li, GM, et al. Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells. Proceedings of the National Academy of Sciences USA 2012; 109: 90479052.
29. Qi, W, et al. Antibodies against H10N8 avian influenza virus among animal workers in Guangdong Province before November 30, 2013, when the first human H10N8 case was recognized. BMC Medicine 2014; 12: 205.
30. Dong, L, et al. A combination of serological assays to detect human antibodies to the avian influenza A H7N9 virus. PLoS ONE 2014; 9: e95612.
31. Puzelli, S, et al. Serological analysis of serum samples from humans exposed to avian H7 influenza viruses in Italy between 1999 and 2003. Journal of Infectious Diseases 2005; 192: 13181322.
32. Di, Trani L, et al. Serosurvey against H5 and H7 avian influenza viruses in Italian poultry workers. Avian Diseases 2012; 56: 10681071.
33. Ito, T, et al. Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. Virology 1997; 227: 493499.
34. Stephenson, I, et al. Detection of anti-H5 responses in human sera by HI using horse erythrocytes following MF59-adjuvanted influenza A/Duck/Singapore/97 vaccine. Virus Research 2004; 103: 9195.

Keywords

Serological comparison of antibodies to avian influenza viruses, subtypes H5N2, H6N1, H7N3 and H7N9 between poultry workers and non-poultry workers in Taiwan in 2012

  • S. Y. HUANG (a1), J. R. YANG (a1), Y. J. LIN (a1), C. H. YANG (a1), M. C. CHENG (a2), M. T. LIU (a1), H. S. WU (a1) (a3) and F. Y. CHANG (a1) (a4)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed