Skip to main content Accessibility help
×
Home

The risk of urban yellow fever resurgence in Aedes-infested American cities

  • Eduardo Massad (a1) (a2) (a3) (a4), Marcos Amaku (a1), Francisco Antonio Bezerra Coutinho (a1), Claudio José Struchiner (a4) (a5), Luis Fernandez Lopez (a1) (a6), Giovanini Coelho (a7), Annelies Wilder-Smith (a2) (a8) (a9) and Marcelo Nascimento Burattini (a1) (a10)...

Abstract

Aedes aegypti, historically known as yellow fever (YF) mosquito, transmits a great number of other viruses such as Dengue, West Nile, Chikungunya, Zika, Mayaro and perhaps Oropouche, among others. Well established in Africa and Asia, Aedes mosquitoes are now increasingly invading large parts of the American continent, and hence the risk of urban YF resurgence in the American cities should because of great concern to public health authorities. Although no new urban cycle of YF was reported in the Americas since the end of an Aedes eradication programme in the late 1950s, the high number of non-vaccinated individuals that visit endemic areas, that is, South American jungles where the sylvatic cycle of YF is transmitted by canopy mosquitoes, and return to Aedes-infested urban areas, increases the risk of resurgence of the urban cycle of YF. We present a method to estimate the risk of urban YF resurgence in dengue-endemic cities. This method consists in (1) to estimate the number of Aedes mosquitoes that explains a given dengue outbreak in a given region; (2) calculate the force of infection caused by the introduction of one infective individual per unit area in the endemic area under study; (3) using the above estimates, calculate the probability of at least one autochthonous YF case per unit area produced by one single viraemic traveller per unit area arriving from a YF endemic or epidemic sylvatic region at the city studied. We demonstrate that, provided the relative vector competence, here defined as the capacity to being infected and disseminate the virus, of Ae. aegypti is greater than 0.7 (with respect to dengue), one infected traveller can introduce urban YF in a dengue endemic area.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The risk of urban yellow fever resurgence in Aedes-infested American cities
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The risk of urban yellow fever resurgence in Aedes-infested American cities
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The risk of urban yellow fever resurgence in Aedes-infested American cities
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence: Eduardo Massad, E-mail: edmassad@usp.br

Footnotes

Hide All
*

The contribution of Dr Coelho to this work was done when he was at the Ministry of Health of Brazil.

Footnotes

References

Hide All
1.Bryan, CS, Moss, SW and Kahn, RJ (2004) Yellow fever in the Americas. Infectious Diseases Clinics of North America 18, 275292.
2.Strode, WK (ed.) (1951) Yellow Fever. New York: McGraw Hill.
3.Gubler, D (2004) The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comparative Immunology and Microbiology of Infectious Diseases 27, 319330.
4.Bryant, JE, Holmes, EC and Barrett, AD (2007) Out of Africa: a molecular perspective on the introduction of yellow fever virus into the Americas. PLoS Pathogens 3(5), e75.
5.Dick, OB, Martín, LS, Montoya, RH, del Diego, J, Zambrano, B and Dayan, GH (2012) The history of dengue outbreaks in the Americas. American Journal of Tropical Medicine and Hygiene 87(4), 584593.
6.Magalhães, RCS. A Erradicação do Aedes aegypti: Febre Amarela, Fred Soper e Saúde Pública nas Américas (1918–1968) (Rio de Janeiro, Editora FIOCRUZ, 2016). Available from SciELO Books. Available at http://books.scielo.org.
7.Gardner, CL and Ryman, KD (2010) Yellow fever: a reemerging threat. Clinics in Laboratory Medicine 30(1), 237260.
8.Massad, E, Coutinho, FAB, Burattini, MN and Lopez, LF (2001) The risk of yellow fever in a dengue-infested area. Transactions of the Royal Society of Tropical Medicine and Hygiene 95(4), 370374.
9.WHO. Yellow Fever Brazil – 20 March 2017. Disease outbreak news. Available at http://www.who.int/csr/don/20-march-2017-yellow-fever-brazil/en/ (Accessed 13 June 2017).
10.PAHO. Epidemiological update - Yellow Fever – 17 April 2017. Available at http://reliefweb.int/report/brazil/epidemiological-update-yellow-fever-17-april-2017 (Accessed 13 June 2017).
11.WHO. Yellow Fever in Angola – 14 June 2016. Available at http://www.who.int/csr/don/14-june-2016-yellow-fever-angola/en/ (Accessed 13 June 2017).
12.ProMED-mail/ISID. Yellow fever – Africa (04): Cote d'Ivoire. Published Date: 2017-09-14. Archive Number: 20170914.5315296. Available at https://www.promedmail.org/post/5315296 (Accessed 14 September 2017).
13.CDC. Zika Virus: Potential Range in US. Estimated range of Aedes albopictus and Aedes aegypti in the United States, 2016. Available at https://www.cdc.gov/zika/vector/range.html (Accessed 14 September 2017).
14.Amaku, M, Coutinho, FAB and Massad, E (2011) Why dengue and yellow fever coexist in some areas of the world and not in others? Biosystems 106(2–3), 111120.
15.Massad, E, Coutinho, FAB and Wilder-Smith, A (2016) Is Zika a substantial risk for visitors to the Rio de Janeiro Olympic Games? Lancet 388(10039), 25.
16.Gardner, CL and Ryman, KD (2010) Yellow fever: a reemerging threat. Clinics in Laboratory Medicine 30(1), 237260.
17.Couto-Lima, D, Madec, Y, Bersot, MI, Campos, SS, Motta, MA, Santos, FB, Vazeille, M, Vasconcelos, PFC, Lourenço-de-Oliveira, R and Failloux, AB (2017) Potential risk of re-emergence of urban transmission of yellow fever virus in Brazil facilitate by competent Aedes populations. Scientific Reports 7, 4848.
18.Massad, E, Amaku, M, Coutinho, FAB, Struchiner, CJ, Lopez, LF, Wilder-Smith, A and Burattini, MN (2017) Estimating the size of Aedes aegypti populations from dengue incidence data: implications for the risk of yellow fever, Zika virus and chikungunya outbreaks. Infectious Disease Modelling 2, 441e454.
19.Ximenes, R, Amaku, M, Lopez, LF, Coutinho, FAB, Burattini, MN, Greenhalgh, D, Wilder-Smith, A, Struchiner, CJ and Massad, E (2016) The risk of dengue for non-immune foreign visitors to the 2016 Summer Olympic Games in Rio de Janeiro, Brazil. BMC Infectious Diseases 16, 186.
20.SINAN - Sistema Nacional de Informação de Agravos de Notificação. Available at http://portalsinan.saude.gov.br/ (Accessed 4 November 2016).
21.Chernick, MR (2008) Bootstrap Methods: A Guide for Practitioners and Researchers. New Jersey: John Wiley & Sons.
22.Coutinho, FAB, Burattini, MN, Lopez, LF and Massad, E (2006) Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue. Bulletin of Mathematical Biology 68(8), 22632282.
23.Amaku, M, Azevedo, F, Burattini, MN, Coelho, GE, Coutinho, FA, Greenhalgh, D, Lopez, LF, Motitsuki, RS, Wilder-Smith, A and Massad, E (2016) Magnitude and frequency variations of vector-borne infection outbreaks using the Ross-Macdonald model: explaining and predicting outbreaks of dengue fever. Epidemiology & Infection 19, 116.
24.Bailey, NT (2006) The Elements of Stochastic Processes with Applications to the Natural Sciences. New York: John Wiley & Sons.
25.Maciel-de-Freitas, R, Eiras, AE and Lourenço-de-Oliveira, R (2008) Calculating the survival rate and estimated population density of gravid Aedes aegypti (Diptera, Culicidae) in Rio de Janeiro, Brazil. Cadernos de Saude Publica 24(12), 27472754.
26.Johnson, BW, Chambers, TV, Crabtree, MB, Filippis, AMB, Vilarinhos, PTR, Resende, M, Macoris, MLG and Miller, BR (2002) Vector competence of Brazilian Aedes aegypti and Ae. albopictus for a Brazilian yellow fever virus isolate. Transactions of the Royal Society of Tropical Medicine and Hygiene 96, 611613.
27.Johansson, MA, Arana-Vizcarrondo, N, Biggerstaff, BJ, Gallagher, N, Marano, N and Staples, JE (2012) Assessing the risk of international spread of yellow fever virus: a mathematical analysis of an urban outbreak in Asunción, 2008. American Journal of Tropical Medicine and Hygiene 86(2), 349358.
28.Kraemer, MUG, Faria, NR, Reiner, RC Jr., Golding, N, Nikolay, B, Stasse, S, Johansson, MA, Salje, H, Faye, O, Wint, GRW, Niedrig, M, Shearer, FM, Hill, SC, Thompson, RN, Bisanzio, D, Taveira, N, Nax, HH, Pradelski, BSR, Nsoesie, EO, Murphy, NR, Bogoch, II, Khan, K, Brownstein, JS, Tatem, AJ, de Oliveira, T, Smith, DL, Sall, AA, Pybus, OG, Hay, SI and Cauchemez, S (2017) Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015–16: a modelling study. Lancet Infectious Diseases 17(3), 330338.
29.Massad, E, Coutinho, FAB, Burattini, MN, Lopez, LF and Struchiner, CJ (2005) Yellow fever vaccination: how much is enough? Vaccine 23(30), 39083914.

Keywords

The risk of urban yellow fever resurgence in Aedes-infested American cities

  • Eduardo Massad (a1) (a2) (a3) (a4), Marcos Amaku (a1), Francisco Antonio Bezerra Coutinho (a1), Claudio José Struchiner (a4) (a5), Luis Fernandez Lopez (a1) (a6), Giovanini Coelho (a7), Annelies Wilder-Smith (a2) (a8) (a9) and Marcelo Nascimento Burattini (a1) (a10)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed