Skip to main content Accessibility help
×
Home

Risk factors for the occurrence of Escherichia coli virulence genes eae, stx1 and stx2 in wild bird populations

  • L. A. HUGHES (a1), M. BENNETT (a1), P. COFFEY (a2), J. ELLIOTT (a2), T. R. JONES (a1), R. C. JONES (a3), A. LAHUERTA-MARIN (a1), K. McNIFFE (a2), D. NORMAN (a2), N. J. WILLIAMS (a1) and J. CHANTREY (a3)...

Summary

Shiga toxin-producing Escherichia coli (STEC) can cause serious disease in human beings. Ruminants are considered to be the main reservoir of human STEC infections. However, STEC have also been isolated from other domestic animals, wild mammals and birds. We describe a cross-sectional study of wild birds in northern England to determine the prevalence of E. coli-containing genes that encode Shiga toxins (stx1 and stx2) and intimin (eae), important virulence determinants of STEC associated with human disease. Multivariable logistic regression analysis identified unique risk factors for the occurrence of each virulence gene in wild bird populations. The results of our study indicate that while wild birds are unlikely to be direct sources of STEC infections, they do represent a potential reservoir of virulence genes. This, coupled with their ability to act as long-distance vectors of STEC, means that wild birds have the potential to influence the spread and evolution of STEC.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Risk factors for the occurrence of Escherichia coli virulence genes eae, stx1 and stx2 in wild bird populations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Risk factors for the occurrence of Escherichia coli virulence genes eae, stx1 and stx2 in wild bird populations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Risk factors for the occurrence of Escherichia coli virulence genes eae, stx1 and stx2 in wild bird populations
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr L. A. Hughes. National Centre for Zoonosis Research, University of Liverpool, Leahurst, Neston, Cheshire CH64 7TE, UK. (Email: Lhughes@liverpool.ac.uk)

References

Hide All
1. Madigan, MT, Martinko, JM. Brock Biology of Microorganisms. New Jersey: Pearson Prentice Hall, 2003.
2. Nataro, JP, Kaper, JB. Diarrheagenic Escherichia coli. Clinical Microbiology Reviews 1998; 11: 142201.
3. Chapman, PA, et al. Cattle as a possible source of verocytotoxin-producing Escherichia coli O157 infections in man. Epidemiology and Infection 1993; 111: 439447.
4. Beutin, L, et al. Prevalence and some properties of verotoxin (Shiga-like toxin)-producing Escherichia coli in seven different species of healthy domestic animals. Journal of Clinical Microbiology 1993; 31: 24832488.
5. Bailey, JR, et al. Wild rabbits – a novel vector for Vero cytotoxigenic Escherichia coli (VTEC) O157. Communicable Disease and Public Health 2002; 5: 7475.
6. Wallace, JS, Cheasty, T, Jones, K. Isolation of vero cytotoxin-producing Escherichia coli O157 from wild birds. Journal of Applied Microbiology 1997; 82: 399404.
7. Muniesa, M, et al. Occurrence of Escherichia coli O157:H7 and other enterohemorrhagic Escherichia coli in the environment. Environmental Science & Technology 2006; 40: 71417149.
8. Kaper, JB, O'Brian, AD. Escherichia coli O157:H7 and other Shiga Toxin-producing E. coli Strains. Washington DC: ASM Press, 1998.
9. Schmitt, CK, Meysick, KC, O'Brien, AD. Bacterial toxins: friends or foes? Emerging Infectious Diseases 1999; 5: 224234.
10. James, CE, et al. Lytic and lysogenic infection of diverse Escherichia coli and Shigella strains with a verocytotoxigenic bacteriophage. Applied and Environmental Microbiology 2001; 67: 43354337.
11. Donnenberg, MS, Kaper, JB. Enteropathogenic Escherichia coli. Infection & Immunity 1992; 60: 39533961.
12. Paton, JC, Paton, AW. Pathogenesis and diagnosis of Shiga-toxin producing Escherichia coli infections. Clinical Microbiology Reviews 1998; 11: 450479.
13. Kaper, JB, Nataro, JP, Mobley, LT. Pathogenic Escherichia coli. Nature Reviews Microbiology 2004; 2: 123140.
14. Foster, G, et al. Analysis of feces samples collected from a wild-bird garden feeding station in Scotland for the presence of verocytotoxin-producing Escherichia coli O157. Applied and Environmental Microbiology 2006; 72: 22652267.
15. Wahlstrom, H, et al. Survey of Campylobacter species, VTEC O157 and Salmonella species in Swedish wildlife. Veterinary Record 2003; 153: 7480.
16. Pedersen, K, et al. Prevalence of shiga toxin-producing Escherichia coli and Salmonella enterica in rock pigeons captured in Fort Collins, Colorado. Journal of Wildlife Diseases 2006; 42: 4655.
17. Morabito, S, et al. Detection and characterization of Shiga toxin-producing Escherichia coli in feral pigeons. Veterinary Microbiology 2001; 82: 275283.
18. Kobayashi, H, Pohjanvirta, T, Pelkonen, S. Prevalence and characteristics of intimin- and Shiga toxin-producing Escherichia coli from gulls, pigeons and broilers in Finland. Journal of Veterinary Medical Science 2002; 64: 10711073.
19. Redfern, CPE, Clark, JA. Ringer's Manual. Thetford, UK: British Trust for Ornithology, 2001.
20. Cunningham, AA, et al. Garden bird health. Veterinary Record 2005; 156: 656.
21. Mulvihill, RS, Leberman, RC.Powdermill Banding Station Protocol, 2006 (http://www.westol.com/~banding/PowdermillBandingProtocol_Jan2006b.pdf).
22. Beebakhee, G, et al. Cloning and nucleotide sequence of the eae gene homologue from enterohemorrhagic Escherichia coli serotype O157:H7. FEMS Microbiology Letters 1992; 70: 6368.
23. Yu, J, Kaper, JB. Cloning and characterization of the eae gene of enterohaemorrhagic Escherichia coli O157:H7. Molecular Microbiology 1992; 6: 411417.
24. La Ragione, RM, et al. Phenotypic and genotypic characterization of avian Escherichia coli O86:K61 isolates possessing a gamma-like intimin. Applied and Environmental Microbiology 2002; 68: 49324942.
25. Hosmer, DW, Lemeshow, S. Applied Logistic Regression. New York: John Wiley & Sons Inc., 2000.
26. Goldstein, H, Browne, W, Rasbash, J. Extensions of the Intra-Unit Correlation Coefficient to Complex Generalised Linear Multilevel Models. London, UK: Institute of Education, 2000.
27. Nielsen, EM, et al. Verocytotoxin-producing Escherichia coli in wild birds and rodents in close proximity to farms. Applied and Environmental Microbiology 2004; 70: 69446947.
28. Makino, S, et al. Detection and characterization of Shiga toxin-producing Escherichia coli from seagulls. Epidemiology and Infection 2000; 125: 5561.
29. Schmidt, H, et al. A new shiga toxin 2 variant (Stx2f) from Escherichia coli isolated from pigeons. Applied and Environmental Microbiology 2000; 66: 12051208.
30. Gunn, GJ, et al. An investigation of factors associated with the prevalence of verocytotoxin producing Escherichia coli O157 shedding in Scottish beef cattle. Veterinary Journal 2007; 174: 554564.
31. Garcia-Aljaro, C, et al. Newly identified bacteriophages carrying the stx2g Shiga toxin gene isolated from Escherichia coli strains in polluted waters. FEMS Microbiology Letters 2006; 258: 127135.
32. Muniesa, M, Serra-Moreno, R, Jofre, J. Free Shiga toxin bacteriophages isolated from sewage showed diversity although the stx genes appeared conserved. Environmental Microbiology 2004; 6: 716725.
33. Loukiadis, E, et al. Characterization of Shiga toxin gene (stx)-positive and intimin gene (eae)-positive Escherichia coli isolates from wastewater of slaughterhouses in France. Applied and Environmental Microbiology 2006; 72: 32453251.
34. Ihekweazu, C, et al. Outbreak of E. coli O157 infection in the south west of the UK: risks from streams crossing seaside beaches. Eurosurveillance 2006; 11: 128130.
35. Scaife, HR, et al. Wild rabbits (Oryctolagus cuniculus) as potential carriers of verocytotoxin-producing Escherichia coli. Veterinary Record 2006; 159: 175178.
36. Edrington, TS, et al. Variation in the faecal shedding of Salmonella and E. coli O157:H7 in lactating dairy cattle and examination of Salmonella genotypes using pulsed-field gel electrophoresis. Letters in Applied Microbiology 2004; 38: 366372.
37. Sandhu, KS, et al. Prevalence of the eaeA gene in verotoxigenic Escherichia coli strains from dairy cattle in Southwest Ontario. Epidemiology and Infection 1996; 116: 17.
38. Boerlin, P, et al. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. Journal of Clinical Microbiology 1999; 37: 497503.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed