Skip to main content Accessibility help
×
Home

The rise of methicillin resistant Staphylococcus aureus: now the dominant cause of skin and soft tissue infection in Central Australia

  • E. MACMORRAN (a1) (a2), S. HARCH (a1) (a2), E ATHAN (a2) (a3), S LANE (a2) (a3), S TONG (a4) (a5), L CRAWFORD (a1), S KRISHNASWAMY (a1) and S HEWAGAMA (a1)...

Summary

This study aimed to examine the epidemiology and treatment outcomes of community-onset purulent staphylococcal skin and soft tissue infections (SSTI) in Central Australia. We performed a prospective observational study of patients hospitalised with community-onset purulent staphylococcal SSTI (n = 160). Indigenous patients accounted for 78% of cases. Patients were predominantly young adults; however, there were high rates of co-morbid disease. Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) was the dominant phenotype, accounting for 60% of cases. Hospitalisation during the preceding 6 months, and haemodialysis dependence were significant predictors of CA-MRSA infection on univariate analysis. Clinical presentation and treatment outcomes were found to be comparable for methicillin-susceptible S. aureus (MSSA) and methicillin-resistant cases. All MRSA isolates were characterised as non-multi-resistant, with this term used interchangeably with CA-MRSA in this analysis. We did not find an association between receipt of an active antimicrobial agent within the first 48 h, and progression of infection; need for further surgical debridement; unplanned General Practitioner or hospital re-presentation; or need for further antibiotics. At least one adverse outcome was experienced by 39% of patients. Clindamycin resistance was common, while rates of trimethoprim–sulfamethoxazole resistance were low. This study suggested the possibility of healthcare-associated transmission of CA-MRSA. This is the first Australian report of CA-MRSA superseding MSSA as the cause of community onset staphylococcal SSTI.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The rise of methicillin resistant Staphylococcus aureus: now the dominant cause of skin and soft tissue infection in Central Australia
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The rise of methicillin resistant Staphylococcus aureus: now the dominant cause of skin and soft tissue infection in Central Australia
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The rise of methicillin resistant Staphylococcus aureus: now the dominant cause of skin and soft tissue infection in Central Australia
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Eleanor MacMorran, Department of Microbiology and Infectious Diseases, John Radcliffe Hospital, Oxford, UK. (Email: emacmorran@gmail.com, eleanor.macmorran@ouh.nhs.uk)

References

Hide All
1. Ruhe, JJ, et al. Community-onset methicillin-resistant Staphylococcus aureus skin and soft-tissue infections: impact of antimicrobial therapy on outcome. Clinical Infectious Diseases 2007; 44: 777784.
2. Tong, SY, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews 2015; 28: 603661.
3. Gould, IM. Antibiotics, skin and soft tissue infection and methicillin-resistant Staphylococcus aureus: cause and effect. International Journal of Antimicrobial Agents 2009; 34: 5861.
4. Tong, SY, et al. Community-associated strains of methicillin resistant Staphylococcus aureus and methicillin susceptible S. aureus in Indigenous Northern Australia: epidemiology and outcomes. Journal of Infectious Diseases 2009; 199: 14611470.
5. Hewagama, S, Spelman, T, Einsiedel, LJ. Staphylococcus aureus bacteraemia at Alice Springs Hospital, Central Australia, 2003–2006. Internal Medicine Journal 2012; 42: 505512.
6. Tong, SY, et al. Impact of ethnicity and socio-economic status on Staphylococcus aureus bacteremia incidence and mortality: a heavy burden in Indigenous Australians. BMC Infectious Diseases 2012; 12: 249.
7. Tong, SY, et al. Progressive increase in community-associated methicillin resistant Staphylococcus aureus in Indigenous populations in northern Australia from 1993 to 2012. Epidemiology and Infection 2015; 143: 15191523.
8. Coombs, GW, et al. for the Australian Group on Antimicrobial Resistance (AGAR). Community-onset Staphylococcus aureus surveillance programme annual report, 2012. Communicable Diseases Intelligence 2014; 38: E59E69.
9. Miller, LG, et al. A prospective investigation of outcomes after hospital discharge for endemic community-acquired methicillin-resistant and -susceptible Staphylococcus aureus skin infection. Clinical Infectious Diseases 2007; 44: 483492.
10. Chua, K, et al. Not community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA)! A clinician's guide to community MRSA – its evolving antimicrobial resistance and implications for therapy. Clinical Infectious Diseases 2011; 52: 99114.
11. Ng, JW, et al. Phylogenetically distinct Staphylococcus aureus lineage prevalent among Indigenous communities in Northern Australia. Journal of Clinical Microbiology 2009; 47: 22952300.
12. Udo, EE, Pearman, JW, Grubb, WB. Genetic analysis of community isolates of methicillin-resistant Staphylococcus aureus in Western Australia. Journal of Hospital Infection 1993; 25: 97108.
13. Seybold, U, et al. Emergence of community-associated methicillin resistant Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream infections. Clinical Infectious Diseases 2006; 42: 647656.
14. Williams, DJ, et al. Comparative effectiveness of antibiotic treatment strategies for pediatric skin and soft-tissue infections. Pediatrics 2011; 128: e479-e487.
15. Stryjewski, ME, Chambers, HF. Skin and soft-tissue infections caused by community-acquired methicillin-resistant Staphylococcus aureus . Clinical Infectious Diseases 2008; 46: S368S377.
16. Frei, CR, et al. Trimethoprim-sulfamethoxazole or clindamycin for community-associated MRSA (CA-MRSA) skin infections. Journal of the American Board of Family Medicine 2010; 23: 714719.
17. Chen, AE, et al. Randomised controlled trial of cephalexin versus clindamycin for uncomplicated pediatric skin infections. Pediatrics 2011; 127: e573e580.
18. Schuler, CL, et al. Decreasing duration of antibiotic prescribing for uncomplicated skin and soft tissue infections. Pediatrics 2016; 137: 17.
19. Einsiedel, L, et al. Non-communicable diseases, infection and survival in a retrospective cohort of Indigenous and non-Indigenous adults in central Australia. British Medical Journal Open 2013; 3: e003070.
20. Stevens, CL, et al. Community-acquired methicillin-resistant Staphylococcus aureus in Central Australia. Communicable Diseases Intelligence 2006; 30: 462466.
21. Northern Territory Government Department of Health. Alice Springs Hospital 2016. Retrieved from http://www.health.nt.gov.au/Hospitals/Alice_Springs_Hospital/index.aspx.
22. Northern Territory Government Department of Health. Annual Report 2013-14. Retrieved from http://www.health.nt.gov.au/Publications/Corporate_Publications/index.aspx.
23. Australian Bureau of Statistics 2011. Census of Population and Housing – Counts of Aboriginal and Torres Strait Islander Australians. Cat no. 2075·0, ABS, Canberra.
24. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Critical Care Medicine 1992; 20: 864874.
25. Tong, SY, et al. Global implications of the emergence of community-associated methicillin-resistant Staphylococcus aureus in Indigenous populations. Clinical Infectious Diseases 2008; 46: 18711878.
26. Talan, DA, et al. Comparison of Staphylococcus aureus from skin and soft-tissue infections in US emergency department patients, 2004 and 2008. Clinical Infectious Diseases 2011; 53: 144149.
27. Stinear, TB, et al. Adaptive change inferred from genomic population analysis of the ST93 epidemic clone of community-associated methicillin-resistant Staphylococcus aureus . Genome Biology and Evolution 2014; 6: 366378.
28. Harch, SA, et al. High burden of complicated skin and soft tissue infections in the Indigenous population of Central Australia due to dominant Panton Valentine Leucocidin clones ST93-MRSA and CC121-MSSA. BMC Infectious Diseases 2017; 17: 405.
29. McDonald, M, et al. Use of a single-nucleotide polymorphism genotyping system to demonstrate the unique epidemiology of methicillin-resistant Staphylococcus aureus in remote Aboriginal communities. Journal of Clinical Microbiology 2006; 44: 37203727.
30. Baggett, HC, et al. Community-onset methicillin-resistant Staphylococcus aureus associated with antibiotic use and the cytotoxin Panton-Valentine leucocidin during a furunculosis outbreak in rural Alaska. Journal of Infectious Diseases 2004; 189: 15651573.
31. Brennan, L, et al. Community-associated methicillin-resistant Staphylococcus aureus carriage in hospitalized patients in tropical Northern Australia. Journal of Hospital Infection 2013; 83: 205211.
32. O'Brien, FG, et al. Population dynamics of methicillin-susceptible and -resistant Staphylococcus aureus in remote communities. Journal of Antimicrobial Chemotherapy 2009; 64: 684-693.
33. Zacharioudakis, IM, et al. Meta-analysis of methicillin-resistant Staphylococcus aureus colonization and risk of infection in dialysis patients. Journal of the American Society of Nephrology 2014; 25: 21312141.
34. Jahamy, H, et al. Staphylococcus aureus skin/soft-tissue infections: the impact of SCCmec type and Panton-Valentine leucocidin. Scandinavian Journal of Infectious Diseases 2008; 40: 601606.
35. Young, DM, et al. An epidemic of methicillin-resistant Staphylococcus aureus soft tissue infections among medically underserved patients. Archives of Surgery 2004; 139: 947953.
36. May, LS, et al. Treatment failure outcomes for emergency department patients with skin and soft tissue infections. Western Journal of Emergency Medicine 2015; 5: 642652.
37. Lee, GC, et al. A prospective observational cohort study in primary care practices to identify factors associated with treatment failure in Staphylococcus aureus skin and soft tissue infections. Annals of Clinical Microbiology and Antimicrobials 2016; 15: 17.
38. O'Brien, FG, et al. Diversity among community isolates of methicillin-resistant Staphylococcus aureus in Australia. Journal of Clinical Microbiology 2004; 42: 31853190.
39. Talan, DA, et al. Trimethoprim-Sulfamethoxazole versus placebo for uncomplicated skin abscess. New England Journal of Medicine 2016; 374: 823832.
40. Leclercq, R. Mechanisms of resistance to macrolides and lincosamides: nature of resistance elements and their clinical implications. Clinical Infectious Diseases 2002; 34: 482492.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed