Skip to main content Accessibility help
×
Home

Research about the optimal strategies for prevention and control of varicella outbreak in a school in a central city of China: based on an SEIR dynamic model

  • Wen-ting Zha (a1), Feng-rui Pang (a1), Nan Zhou (a1), Bin Wu (a1), Ying Liu (a1), Yan-bing Du (a1), Xiu-qin Hong (a1) and Yuan Lv (a1)...

Abstract

Varicella is an acute respiratory infectious diseases, with high transmissibility and quick dissemination. In this study, an SEIR (susceptible-exposed-infected-recovered) dynamic model was established to explore the optimal prevention and control measures according to the epidemiological characteristics about varicella outbreak in a school in a central city of China. Berkeley Madonna 8.3.18 and Microsoft Office Excel 2010 software were employed for the model simulation and data management, respectively. The result showed that the simulated result of SEIR model agreed well with the reported data when β (infected rate) equal to 0.067. Models showed that the cumulative number of cases was only 13 when isolation adopted when the infected individuals were identified (assuming isolation rate was up to 100%); the cumulative number of cases was only two and the TAR (total attack rate) was 0.56% when the vaccination coefficient reached 50%. The cumulative number of cases did not change significantly with the change of efficiency of ventilation and disinfection, but the peak time was delayed; when δ (vaccination coefficient) = 0.1, m (ventilation efficiency) = 0.7 or δ = 0.2, m = 0.5 or δ = 0.3, m = 0.1 or δ = 0.4 and above, the cumulative number of cases would reduce to one case and TAR would reduce to 0.28% with combined interventions. Varicella outbreak in school could be controlled through strict isolation or vaccination singly; combined interventions have been adopted when the vaccination coefficient was low.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Research about the optimal strategies for prevention and control of varicella outbreak in a school in a central city of China: based on an SEIR dynamic model
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Research about the optimal strategies for prevention and control of varicella outbreak in a school in a central city of China: based on an SEIR dynamic model
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Research about the optimal strategies for prevention and control of varicella outbreak in a school in a central city of China: based on an SEIR dynamic model
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Yuan LV, E-mail: 183259829@qq.com or ly598598@126.com

Footnotes

Hide All
*

Wen-ting ZHA and Feng-rui PANG contributed equally to this work

Footnotes

References

Hide All
1.Su, N, Xing, QM and Liang, WJ (2015) Epidemiological characteristics of breakthrough cases in varicella aggregation in Panyu district of Guangzhou city in 2014. Medical Animal Control 7, 712714.
2.Parkins, MD, Mcneil, SA and Laupland, KB (2009) Routine immunization of adults in Canada: review of the epidemiology of vaccine-preventable diseases and current recommendations for primary prevention. Canadian Journal of Infectious Diseases and Medical Microbiology 20, 8190.10.1155/2009/474035
3.Wiese-Posselt, M et al. (2017) Varicella-zoster virus seroprevalence in children and adolescents in the pre-varicella vaccine era, Germany. BMC Infectious Diseases 17, 356.10.1186/s12879-017-2461-2
4.Su, J et al. (2011) Epidemiological analysis of varicella epidemic in Guangdong Province from 2005 to 2010. Disease Surveillance 26, 178.
5.Liu, G et al. (2017) Investigation and analysis of economic burden of varicella cases in Shenzhen, Guangdong Province. Medical Animal Control 33, 10541056.
6.Pan, HM and Zhang, XF (2006) Epidemiology and Prevention of Vaccine-Preventable Diseases, 7th edn. Wuhan: Wuhan Publish press. 12, 9599.
7.Wang, RP et al. (2017) Influence of infectious disease seasonality on the performance of the outbreak detection algorithm in the China Infectious Disease Automated-alert and Response System. Journal of International Medical Research 46, 98.10.1177/0300060517718770
8.Chen, B et al. (2014) A modeling and experiment framework for the emergency management in AHC transmission. Computational and Mathematical Methods in Medicine 89, 118.
9.Chen, TM et al. (2011) Application of Susceptible Infected-Recovered model in dealing with an outbreak of acute hemorrhagic conjunctivitis at one school. Zhonghua Liu Xing Bing Xue Za Zhi 32, 830833.
10.Chen, TM and Liu, RC (2013) Study on the efficacy of quarantine during outbreaks of acute hemorrhagic conjunctivitis outbreaks at schools through the susceptive-infective quarantine-removal model. Zhonghua Liu Xing Bing Xue Za Zhi 34, 7579.
11.Horn, J, Damm, O and Greiner, W (2018) Influence of demographic changes on the impact of vaccination against varicella and herpes zoster in Germany-a mathematical modelling study. BMC Medicine 16, 3.10.1186/s12916-017-0983-5
12.Hethcote, H, Zhien, M and Shengbing, L (2012) Effects of quarantine in six endemic models for infectious diseases. Mathematical Biosciences 180, 141160.10.1016/S0025-5564(02)00111-6
13.Zhao, WJ (2017) Cleaning and disinfection of respiratory pathogens. Chinese Journal of Nursing S1, 2526.
14.Liu, J et al. (2019) Selection of common disinfectants on the surface of environmental objects in kindergartens and their disinfection effect. Chinese Journal of School Health 40, 14281430.
15.Marin, M et al. (2017) Prevention of varicella: recommendations of the Advisory Committee on Immunization Practices(ACIP). MMWR Recommendations Reports 56, 140.
16.Suo, L, Lu, L and Chen, M (2015) Antibody induced by one-dose varicella vaccine soon became weak in children: evidence from a cross-sectional seroepidemiological survey in Beijing, PRC. BMC Infectious Diseases 15, 509.10.1186/s12879-015-1236-x
17.Liu, P, Mu, J and Lv, L (2019) Epidemiological characteristics of varicella in Shenyang from 2008 to 2017. Journal of Modern Preventive Medicine 46, 166170.
18.Li, WW and Liu, ZY. (2009) The relative researches on the epidemiology and clinical features of varicella[J]. International Journal of Epidemiology and Infectious Disease 36, 427430.
19.Zhang, Z et al. (2014) Field epidemiological investigation on a varicella outbreak in a school of Shenzhen. Journal of Tropical Medicine 14, 12231225.
20.Wu, QS et al. (2018) Effectiveness of varicella vaccine as post-exposure prophylaxis during a varicella outbreak in Shanghai, China. International Journal of Infectious Diseases 66, 51.10.1016/j.ijid.2017.10.016
21.Suo, L, Lu, L and Wang, Q (2017) Varicella outbreak in a highly-vaccinated school population in Beijing, China during the voluntary two-dose era. Vaccine 35, 43684373.10.1016/j.vaccine.2017.06.065
22.Pang, FR et al. (2019) The study on the early warning period of varicella outbreaks based on logistic differential equation model. Epidemiology and Infection 147, 16.10.1017/S0950268818002868

Keywords

Research about the optimal strategies for prevention and control of varicella outbreak in a school in a central city of China: based on an SEIR dynamic model

  • Wen-ting Zha (a1), Feng-rui Pang (a1), Nan Zhou (a1), Bin Wu (a1), Ying Liu (a1), Yan-bing Du (a1), Xiu-qin Hong (a1) and Yuan Lv (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.