Skip to main content Accessibility help
×
Home

The relationship between chitotriosidase activity and tuberculosis

  • M. CHEN (a1) (a2), J. DENG (a1), W. LI (a3), C. SU (a4), Y. XIA (a5), M. WANG (a1), X. LI (a1), B. K. ABUAKU (a1) (a6), H. TAN (a1) and S. W. WEN (a1) (a7)...

Summary

Chitotriosidase, secreted by activated macrophages, is a biomarker of activated macrophages. In this study, we explored whether chitotriosidase could be adopted as a biomarker to evaluate the curative effect on tuberculosis (TB). Five counties were randomly selected out of 122 counties/cities/districts in Hunan Province, China. Our cases were all TB patients who were newly diagnosed or had been receiving treatment at the Centers for Disease Control (CDCs) of these five counties between April and August in 2009. Healthy controls were selected from a community health facility in the Kaifu district of Changsha City after frequency-matching of gender and age with the cases. Chitotriosidase activity was evaluated by a fluorometric assay. Categorical variables were analysed with the χ 2 test. Measurement data in multiple groups were tested with analysis of variance and least significant difference (LSD). Correlation between chitotriosidase activity and the degree of radiological extent (DRE) was examined by Spearman's rank correlation test. The average chitotriosidase activity levels of new TB cases, TB cases with different periods of treatment (<3, 3–6, >6 months) and the control group were 54·47, 34·77, 21·54, 12·73 and 10·53 nmol/h.ml, respectively. Chitotriosidase activity in TB patients declined along with the continuity of treatment. The chitotriosidase activity of both smear-positive and the smear-negative pulmonary TB patients decreased after 6 months' treatment to normal levels (P < 0·05). Moreover, chitotriosidase activity was positively correlated with DRE (r = 0·607, P < 0·001). Our results indicate that chitotriosidase might be a marker of TB treatment effects. However, further follow-up study of TB patients is needed in the future.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The relationship between chitotriosidase activity and tuberculosis
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The relationship between chitotriosidase activity and tuberculosis
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The relationship between chitotriosidase activity and tuberculosis
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

Corresponding author

* Author for correspondence: Dr Hongzhuan Tan, School of Public Health, Central South University, Changsha, Hunan, 410008, China. (Email: tanhz99@qq.com)

References

Hide All
1. WHO. Global Tuberculosis Control 2008: Surveillance, Planning, Financing. Geneva: WHO, 2008.
2. Horsburgh, CR Jr., et al. Revisiting rates of reactivation tuberculosis: a population-based approach. American Journal of Respiratory and Critical Care Medicine 2010; 182: 420425.
3. Walzl, G, et al. Immunological biomarkers of tuberculosis. Nature Reviews Immunology 2011; 11: 343354.
4. WHO. Global Tuberculosis Report 2013. Geneva: WHO, 2013.
5. The Technical Guidance Group of the Fifth National TB Epidemiological Survey. The Fifth national tuberculosis epidemiological survey in 2010 [in Chinese]. Chinese Journal of Antituberculosis 2012; 34: 485508.
6. WHO. Treatment of Tuberculosis: Guidelines, 4th edn. Geneva: WHO, 2010 (http://whqlibdoc.who.int/publications/2010/9789241547833_eng.pdf).
7. Di Rosa, M, et al. Effect of interferon-gamma, interleukin-10, lipopolysaccharide and tumor necrosis factor-alpha on chitotriosidase synthesis in human macrophages. Clinical Chemistry and Laboratory Medicine 2005; 43: 499502.
8. Malaguarnera, L, et al. Interferon-gamma, tumor necrosis factor-alpha, and lipopolysaccharide promote chitotriosidase gene expression in human macrophages. Journal of Clinical Laboratory Analysis 2005; 19: 128132.
9. van Eijk, M, et al. Characterization of human phagocyte-derived chitotriosidase, a component of innate immunity. International Immunology 2005; 17: 15051512.
10. Kologlu, T, et al. Chitotriosidase as a possible marker of clinically evidenced atherosclerosis in dyslipidemic children. Journal of Pediatric Endocrinology & Metabolism 2014; 27: 701708.
11. Debono, M, Gordee, RS Antibiotics that inhibit fungal cell wall development. Annual Review of Microbiology 1994; 48: 471497.
12. Bargagli, E, et al. Chitotriosidase activity in the serum of patients with sarcoidosis and pulmonary tuberculosis. Respiration: International Review of Thoracic Diseases 2007; 74: 548552.
13. Tasci, C, et al. Efficacy of serum chitotriosidase activity in early treatment of patients with active tuberculosis and a negative sputum smear. Therapeutics and Clinical Risk Management 2012; 8: 369372.
14. Cakir, G, et al. Serum chitotriosidase activity in pulmonary tuberculosis: response to treatment and correlations with clinical parameters. Annals of Laboratory Medicine 2012; 32: 184189.
15. WHO. Treatment of Tuberculosis: Guidelines for National Programmes, 3rd edn. Geneva: WHO, 2003.
16. Chen, M, et al. Gender and regional disparities of tuberculosis in Hunan, China. International Journal for Equity in Health 2014; 13: 32.
17. Deniz, O, et al. Serum total cholesterol, HDL-C and LDL-C concentrations significantly correlate with the radiological extent of disease and the degree of smear positivity in patients with pulmonary tuberculosis. Clinical Biochemistry 2007; 40: 162166.
18. Hollak, CE, et al. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. Journal of Clinical Investigation 1994; 93: 12881292.
19. Korolenko, TA, et al. Chitotriosidase as a marker of macrophage stimulation. Bulletin of Experimental Biology and Medicine 2000; 130: 948950.
20. Guirado, E, Schlesinger, LS, Kaplan, G. Macrophages in tuberculosis: friend or foe. Seminars in Immunopathology 2013; 35: 563583.
21. Guan, SP, et al. Chitinases: biomarkers for human diseases. Protein and peptide letters 2009; 16: 490498.
22. Di Rosa, M, et al. Modulation of chitotriosidase during macrophage differentiation. Cell Biochemistry and Biophysics 2013; 66: 239247.
23. Ramanathan, R, et al. Serum chitotriosidase, a putative marker of chronically activated macrophages, increases with normal aging. Journal of Gerontology, Series A, Biological Sciences and Medical Sciences 2013; 68: 13031309.
24. Harlander, M, et al. Serial chitotriosidase measurements in sarcoidosis – two to five year follow-up study. Respiratory Medicine 2014; 108: 775782.
25. Bouzas, L, San Jose, E, Tutor, JC. Chitotriosidase activity in pleural effusions. Clinical Laboratory 2007; 53: 449452.
26. Dupont, WD, Plummer, WD Jr. Power and sample size calculations. A review and computer program. Controlled Clinical Trials 1990; 11: 116128.

Keywords

The relationship between chitotriosidase activity and tuberculosis

  • M. CHEN (a1) (a2), J. DENG (a1), W. LI (a3), C. SU (a4), Y. XIA (a5), M. WANG (a1), X. LI (a1), B. K. ABUAKU (a1) (a6), H. TAN (a1) and S. W. WEN (a1) (a7)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed