## REFERENCES

1.
Plourde, AR, Bloch, EM. A literature review of Zika virus. Emerging Infectious Diseases
2016; 22: 1185–1192.

2.
Instituto Nacional de Salud. Reporte de notificación casos de Zika semana 32-2015 a semana 42-2016 [Zika case notification report, week 32 2015 – week 42 2016]. Colombia: Instituto Nacional de Salud [National Institute of Health], 2016. http://www.ins.gov.co/Noticias/ZIKA/Forms/AllItems.aspx.
3.
Hsieh, T, Lee, J, Chang, H. SARS epidemiology modeling. Emerging Infectious Diseases
2004; 10: 1165–1167.

4.
Zhou, G, Yan, G. Severe acute respiratory syndrome epidemic in Asia. Emerging Infectious Diseases
2003; 9: 1608–1610.

5.
Hsieh, Y, Cheng, Y. Real-time forecast of multi-wave epidemic outbreaks. Emerging Infectious Diseases
2006; 12: 122–127.

6.
Richards, F. A flexible growth function for empirical use. Journal of Experimental Botany
1959; 10: 290–301.

7.
Hsieh, Y. Richards model: a simple procedure for real-time prediction of outbreak severity. In: Ma, Z, Wu, J, Zhoue, Y, eds. Modeling and Dynamics of Infectious Diseases, Volume 11. Contemporary Applied Mathematics (CAM), Higher Education Press, 2009, pp. 216–236. DOI: 10.1142/9789814261265_0009. http://mail.cmu.edu.tw/hsieh/pdf/pub57.pdf.
8.
Hsieh, Y, Ma, S. Intervention measures, turning point, and reproduction number for dengue, Singapore, 2005. American Journal of Tropical Medicine and Hygiene
2009; 80: 66–71.

9.
Hsieh, Y, Chen, C. Turning points, reproduction number, and impact of climatological events for multi-wave dengue outbreaks. Tropical Medicine and International Health
2009; 14: 628–638.

10.
Hsieh, Y, Arazoza, H, Lounes, R. Temporal trends and regional variability of 2001–2002 multiwave DENV-3 epidemic in Havana city: did hurricane Michelle contribute to its severity?
Tropical Medicine and International Health
2013; 18: 830–838.

11.
Hsieh, Y-H
et al.
Early outbreak of 2009 influenza A (H1N1) in Mexico prior to identification of pH1N1 virus. PLoS ONE
2011; 6: e23853, 10: e0140810. DOI: 10.1371/journal.pone.0023853.

12.
Hsieh, Y-H. Temporal course of 2014 Ebola virus disease (EVD) outbreak in West Africa elucidated through morbidity and mortality data: a tale of three countries. PLoS ONE
2015; 10: e0140810. DOI: 10.1371/journal.pone.0140810.

13.
Rozema, E. Epidemic models for SARS and measles. The College Mathematics Journal
2007; 38: 246–259.

14.
Tsoularis, A, Wallace, J. Analysis of logistic growth models. Mathematical Biosciences
2002; 179: 21–55.

15.
Liao, J, Liu, R. Re-parameterization of five-parameter logistic function. Journal of Chemometrics
2009; 23: 248–253.

16.
MacDougall, J. Analysis of dose-response studies-Emax model. In: Ting, N, ed. Dose Finding in Drug Development. Statistics for Biology and Health. New York: Springer, 2006, pp. 127–145.

17.
Wellock, I, Emmans, G, Kyriazakis, I. Describing and predicting potential growth in the pig. Animal Science
2004; 78: 379–388.

18.
Seber, G, Wild, C. Nonlinear Regression. New York: Wiley, 1989.

19.
Burnham, K, Anderson, DR. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach, 2nd edn. New York: Springer-Verlag, 2002.

20.
Claeskens, G, Hjort, NL. Model Selection and Model Averaging. Cambridge: Cambridge University Press, 2008.

21.
Posada, D, Buckey, TR. Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology
2004; 53: 793–808.

22.
Moon, H
et al.
Model averaging using the Kullback Information Criterion in estimating effective doses for microbial infection and illness. Risk Analysis
2005; 25: 1147–1159.

23.
Lin, D
et al.
Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R. Berlin Heidelberg: Springer-Verlag, 2012.

24.
Faes, C
et al.
Model averaging using fractional polynomials to estimate a safe level of exposure. Risk Analysis
2007; 27: 111–123.

25.
Jorgensen, M. Fitting animal growth curves. The New Zealand Statistician
1981; 16: 5–15.

26.
Wang, X, Wu, J, Yang, Y. Richards model revisited: validation by and application to infection dynamics. Journal of Theoretical Biology
2012; 313: 12–19.

27.
Burnham, K, Anderson, D. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research
2004; 33: 261–304.

28.
Akaike, H. Information theory and an extension of the maximum likelihood principle. In: Petrov, BN, Csaki, F, eds. Second International Symposium on Information Theory. Budapest: Akadémiai Kiadó, 1973, pp. 267–281.

29.
R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2016. https://www.R-project.org/.
31.
Nishiura, H. Real-time forecasting of an epidemic using a discrete time stochastic model: a case study of pandemic influenza (h1n1-2009). BioMedical Engineering OnLine
2011; 10: 15.