Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-20T13:13:25.771Z Has data issue: false hasContentIssue false

Randomly amplified polymorphic DNA typing: a useful tool for rapid epidemiological typing of Klebsiella pneumoniae

Published online by Cambridge University Press:  19 October 2009

N. A. C. S. Wong
Affiliation:
Departments of Surgery
C. J. Linton
Affiliation:
Pathology and Microbiology, University of Bristol, Bristol Royal Infirmary, Marlborough Street, Bristol, BS2 8IIW, United Kingdom
H. Jalal
Affiliation:
Pathology and Microbiology, University of Bristol, Bristol Royal Infirmary, Marlborough Street, Bristol, BS2 8IIW, United Kingdom
M. R. Millar*
Affiliation:
Pathology and Microbiology, University of Bristol, Bristol Royal Infirmary, Marlborough Street, Bristol, BS2 8IIW, United Kingdom
*
*Author for correspondence and reprint requests.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Discriminatory typing methods are invaluable in the investigation of outbreaks of infectious diseases. Single primers were used to generate randomly amplified polymorphic DNA (RAPD) profiles from Klebsiella pneumoniae isolates of various serotype and K. pneumoniae isolates from cases of sepsis at a Malaysian hospital and two English hospitals. RAPD profiles of acceptable reproducibility, a maximum of three minor band variations, were produced using a rapid DNA extraction method. RAPD typing of K. pneumoniae was shown to be as discriminatory as restriction fragment length polymorphism analysis using pulsed field gel electrophoresis yet quicker and less costly. The findings suggest that RAPD typing may be a useful tool for the epidemiological typing of K. pneumoniae.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

References

1.Platt, R, Da, Goldmann, Cc., Hopkins Epidemiology of nosocomial infection. In: Sl, Gorbach, Jg, Bartlett, Nr, Blacklow, eds. Infectious diseases. Philadelphia: WB Saunders Co. 1992: 90100.Google Scholar
2.Sj, Rubin. Klebsiella marker systems. Infect Control Hosp Epidemiol 1985; 6: 5963.Google Scholar
3.Ayling-Smith, B, Tl, Pitt. State of the art in typing: Klebsiella spp. J Hosp Infect 1990; 16: 287–95.CrossRefGoogle ScholarPubMed
4.Ai, Hartstein, Vh, Morthland, Rourke, Jw, Sykcs, R, Al, Rashad. Plasmid DNA analysis, biotyping and antimicrobic susceptibility as subtyping tests for Klebsiella pneumoniae and Klebsiella oxytoca. Diagn Mierobiol Infect Dis 1993; 16: 3541.Google Scholar
5.Rp, Rennie, Ce, Nord, Sjoberg, L, Ibr, Duncan. Comparison of bacteriophage typing, serotyping and biotyping as aids in epidemiological surveillance of Klebsiella infections. J Clin Mierobiol 1978; 8: 638–12.Google Scholar
6.Thompson, W, Romance, L, Bialkowska-Hobrazanska, H, Rp, Rennie, Ashton, F, Ie, Nicolle. Klebsiella pneumoniae infection on a rehabilitation unit: comparison of epidemiologic typing methods. Infect Control Hosp Epidemiol 1993; 14: 203–10.CrossRefGoogle ScholarPubMed
7.Haertl, R, Barten, R, Bandlow, G. Epidemiological fingerprinting of Klebsiella pneumoniae by small fragment restriction endonuclease analysis (SFREA). Scand J Infect Dis 1991; 23: 737–43.CrossRefGoogle ScholarPubMed
8.Hl, Peng, Py, Wang, JL, Wu, Ct, Chiu, Hy, Chang. Molecular epidemiology of Klebsiella pneumoniae. Chung Hua Min Kuo Wei Sheng Wu Chi Mien 1 Hsueh Tsa Chih 1991; 24: 264–71.Google Scholar
9.Ji, Alos, Lambert, T, Courvalin, P. Comparison of two molecular methods for tracing nosocomial transmission ofEscherichia coli Kl in a neonatal unit. J Clin Microbial 1993; 31: 1704–9.Google Scholar
10.Pf, Lehmann, Lin, D, Ba, Laskcr. Genotypic identification and characterisation of species and strains within the genus Candida by using random amplified polymorphic DNA. J Clin Mierobiol 1992; 30: 3249–54.Google Scholar
11.Ma, Pfaller. Typing methods of epidemiologic investigation. In: Eh, Lenette, A, Balows. Wj, Hausler, Hj, Shadomy, eds. Manual of clinical microbiology. Washington DC: American Society for Microbiology 1992: 171–82.Google Scholar
12.Welsh, J, McClelland, M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 1990; 18: 7213–18.CrossRefGoogle ScholarPubMed
13.Jgk, Williams, Ar, Kubelik, Kj, Lival, Rafalski, Ta, Sv, Tingey. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 1990; 18: 6531–5.Google Scholar
14.Aufauvre-Brown, A, Cohen, J, Dw, Holden. Use of randomly amplified polymorphic DNA markers to distinguish isolates of Aspergillus fumigalus. J Clin Mierobiol 1992; 30: 2991–3.CrossRefGoogle Scholar
15.Bingen, E, Boissinot, C, Desjardins, P et al. Arbitrarily primed polymerase chain reaction provides rapid differentiation of Proteus mirabilis isolates from a pediatric hospital. J Clin Mierobiol 1993; 31: 1055–9.CrossRefGoogle ScholarPubMed
16.Gomez-Lus, P, Bs, Fields, Rf, Benson, Wt, Martin, Sp, O'Connor, Cm, Black. Comparison of arbitrarily primed polymerase chain reaction, ribotyping and monoclonal antibody analysis for subtyping Legionella pneumophilaserogroup 1. J Clin Mierobiol 1993; 31: 1940–2.CrossRefGoogle ScholarPubMed
17.Welsh, J, Pretzman, C, Postic, D, Saint Girons, I, Baranton, G. McClelland, M. Genomic fingerprinting by arbitrarily primed polymerase chain reaction resolves liorrelia burgdorferi in to three distinct phyletic groups. Int.J Syst Bacteriol 1992; 42: 30–7.CrossRefGoogle ScholarPubMed
18.Grothues, D, Bautsch, W, Tummler, B. Analysis of large DNA molecules by field inversion gel eletrophoresis. In: Pj, Greenvvay, ed. Abvances in gene technology, vol 1. London: JAI Press 1989: 132–59.Google Scholar
19.Dj, Lane, Pace, B, Gj, Olsen, Yd, Stahl, Sogin, M, Nr, Pace. Rapid determination of 16s ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Si 1985; 82: 6955–9.Google Scholar
20.Barry, T, Colleran, G, Glennon, M, Lk, Dunican, Gannon, F. The 16s/23s ribosomal spaces region as a target for DNA probes to identify eubacteria. PCR Methods Appl 1991; 1: 51–6.CrossRefGoogle Scholar
21.Aber, R, Dc, Mackel. Epidemiologic typing of nosocomial microorganisms. Am J Med 1981; 70: 899905.CrossRefGoogle ScholarPubMed
22.M, FeganJm, Manners, Dj, Maclean et al. Random amplified polymorphic DNA markers reveal a high degree of genetic diversity in the entomopathogenic fungus Metarhizium anisopliae var. anisopliae. J Gen Microbiol 1993; 139: 2075–81.Google Scholar
23.Ga, Penner, Bush, A, Wise, R et al. Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories. PCR Methods Appl 1993; 2: 341–5.Google Scholar
24.Saulnier, P, Borneix, C, Prevost, G, Andremont, A. Random amplified polymorphic DNA assay is less discriminatory than pulsed field gel electrophoresis for typing strains of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 1993; 31: 982–5.CrossRefGoogle Scholar
25.Fekete, A, Ja, Bantle, Sm, Hailing, Rw, Stich. Amplification fragment length polymorphism in Bnicella strains by use of polymerase chain reaction with arbitrary primers. J Bacteriol 1992; 174: 7778–83.CrossRefGoogle ScholarPubMed