Skip to main content Accessibility help
×
Home

Prophylactic HPV vaccination: past, present, and future

  • P. E. CASTLE (a1) (a2) and M. MAZA (a3)
  • Please note a correction has been issued for this article.

Summary

Human papillomavirus (HPV) is the necessary cause of cervical cancer, the fourth most common cancer and cause of cancer-related death in females worldwide. HPV also causes anal, vaginal, vulvar, penile, and oropharyngeal cancer. Prophylactic HPV vaccines based on recombinantly expressed virus-like particles have been developed. Two first-generation, U.S. Food and Drug Administration (FDA)-approved vaccines prevent infections and disease caused by HPV16 and HPV18, the two HPV genotypes that cause approximately 70% of cervical cancer, and one of these vaccines also prevents HPV6 and HPV11, the two HPV genotypes that cause 90% of genital warts. A next-generation vaccine, recently approved by the U.S. FDA, targets HPV16, HPV18, and five additional HPV genotypes that together causes approximately 90% of cervical cancer as well as HPV6 and HPV11. In clinical trials, these vaccines have shown high levels of efficacy against disease and infections caused by the targeted HPV genotypes in adolescent females and males and older females. Data indicate population effectiveness, and therefore cost effectiveness, is highest in HPV-naive young females prior to becoming sexually active. Countries that implemented HPV vaccination before 2010 have already experienced decreases in population prevalence of targeted HPV genotypes and related anogenital diseases in women and via herd protection in heterosexual men. Importantly, after more than 100 million doses given worldwide, HPV vaccination has demonstrated an excellent safety profile. With demonstrated efficacy, cost-effectiveness, and safety, universal HPV vaccination of all young, adolescent women, and with available resources at least high-risk groups of men, should be a global health priority. Failure to do so will result in millions of women dying from avertable cervical cancers, especially in low- and middle-income countries, and many thousands of women and men dying from other HPV-related cancers.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Prophylactic HPV vaccination: past, present, and future
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Prophylactic HPV vaccination: past, present, and future
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Prophylactic HPV vaccination: past, present, and future
      Available formats
      ×

Copyright

Corresponding author

* Author for correspondence: Dr P. E. Castle, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA. (Email: castle.philip@gmail.com)

References

Hide All
1. Durst, M, et al. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proceedings of the National Academy of Sciences USA 1983; 80: 38123815.
2. Hill, AB. The environment and disease: association or causation? Proceedings of the Royal Society of Medicine 1965; 58: 295300.
3. Schiffman, M, et al. Human papillomavirus and cervical cancer. Lancet 2007; 370: 890907.
4. Rositch, AF, et al. Contributions of recent and past sexual partnerships on incident human papillomavirus detection: acquisition and reactivation in older women. Cancer Research 2012; 72: 6183–90.
5. Strickler, HD, et al. Natural history and possible reactivation of human papillomavirus in human immunodeficiency virus-positive women. Journal of the National Cancer Institute 2005; 97: 577586.
6. Plummer, M, Peto, J, Franceschi, S. Time since first sexual intercourse and the risk of cervical cancer. International Journal of Cancer 2012; 130: 26382644.
7. de Sanjose, S, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncology 2010; 11: 10481056.
8. Guan, P, et al. Human papillomavirus types in 115,789 HPV-positive women: a meta-analysis from cervical infection to cancer. International Journal of Cancer 2012; 131: 23492359.
9. Wheeler, CM, et al. A population-based study of human papillomavirus genotype prevalence in the United States: Baseline measures prior to mass human papillomavirus vaccination. International Journal of Cancer 2013; 132: 198207.
10. Guimera, N, et al. The occasional role of low-risk human papillomaviruses 6, 11, 42, 44, and 70 in anogenital carcinoma defined by laser capture microdissection/PCR methodology: results from a global study. American Journal of Surgical Pathology 2013; 37: 12991310.
11. Schiffman, M, Clifford, G, Buonaguro, FM. Classification of weakly carcinogenic human papillomavirus types: addressing the limits of epidemiology at the borderline. Infectious Agents and Cancer 2009; 4: 8.
12. Maucort-Boulch, D, Franceschi, S, Plummer, M. International correlation between human papillomavirus prevalence and cervical cancer incidence. Cancer Epidemiology, Biomarkers and Prevention 2008; 17: 717720.
13. Freeman, HP, Wingrove, BK. Excess cervical cancer mortality: a marker for low access to health care in poor communities. National Institutes of Health; 2007. Report No. 05–5282.
14. Castle, PE, et al. Short term persistence of human papillomavirus and risk of cervical precancer and cancer: population based cohort study. British Medical Journal 2009; 339: b2569.
15. Kjaer, SK, et al. Long-term absolute risk of cervical intraepithelial neoplasia grade 3 or worse following human papillomavirus infection: role of persistence. Journal of the National Cancer Institute 2010; 102: 14781488.
16. Schiffman, M, Rodriguez, AC. Heterogeneity in CIN3 diagnosis. Lancet Oncology 2008; 9: 404406.
17. McCredie, MR, et al. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: a retrospective cohort study. Lancet Oncology 2008; 9: 425434.
18. Cervical Cancer Inquiry. New Zealand Nursing Forum 1988; 16: 56.
19. Vink, MA, et al. Clinical progression of high-grade cervical intraepithelial neoplasia: estimating the time to preclinical cervical cancer from doubly censored national registry data. American Journal of Epidemiology 2013; 178: 11611169.
20. Darragh, TM, et al. The Lower Anogenital Squamous Terminology Standardization Project for HPV-Associated Lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. Journal of Lower Genital Tract Disease 2012; 16: 205242.
21. Forman, D, et al. Global burden of human papillomavirus and related diseases. Vaccine 2012 November; 30 (Suppl. 5): F12–23.
22. Bernard, HU, et al. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 2010; 401: 7079.
23. Markowitz, LE, et al. Quadrivalent Human Papillomavirus Vaccine: Recommendations of the Advisory Committee on Immunization Practices (ACIP). Morbidity and Mortality Weekly Report Recommendations and Reports 2007; 56: 124.
24. Saslow, D, et al. American Cancer Society Guideline for human papillomavirus (HPV) vaccine use to prevent cervical cancer and its precursors. CA: A Cancer Journal for Clinicians 2007; 57: 728.
25. CDC. FDA licensure of bivalent human papillomavirus vaccine (HPV2, Cervarix) for use in females and updated HPV vaccination recommendations from the Advisory Committee on Immunization Practices (ACIP). Morbidity and Mortality Weekly Report 2010; 59: 626629.
26. CDC. FDA licensure of quadrivalent human papillomavirus vaccine (HPV4, Gardasil) for use in males and guidance from the Advisory Committee on Immunization Practices (ACIP). Morbidity and Mortality Weekly Report 2010; 59: 630632.
27. Kjaer, SK, et al. A pooled analysis of continued prophylactic efficacy of quadrivalent human papillomavirus (types 6/11/16/18) vaccine against high-grade cervical and external genital lesions. Cancer Prevention Research 2009 2: 868878.
28. Munoz, N, et al. Impact of human papillomavirus (HPV)-6/11/16/18 vaccine on all HPV-associated genital diseases in young women. Journal of the National Cancer Institute 2010; 102: 325339.
29. Lehtinen, M, et al. Overall efficacy of HPV-16/18 AS04-adjuvanted vaccine against grade 3 or greater cervical intraepithelial neoplasia: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncology 2012; 13: 8999.
30. Herrero, R, et al. Prevention of persistent human papillomavirus infection by an HPV16/18 vaccine: a community-based randomized clinical trial in Guanacaste, Costa Rica. Cancer Discovery 2011; 1: 408419.
31. Garland, SM, et al. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. New England Journal of Medicine 2007; 356: 19281943.
32. Hildesheim, A, et al. Effect of human papillomavirus 16/18 L1 viruslike particle vaccine among young women with preexisting infection: a randomized trial. Journal of the American Medical Association 2007; 298: 743753.
33. WHO. Human papillomavirus vaccines: WHO position paper, October 2014. Geneva, Switzerland: WHO, 2014. Report No.: 43.
34. Wheeler, CM, et al. Cross-protective efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncology 2012; 13: 100110.
35. Malagon, T, et al. Cross-protective efficacy of two human papillomavirus vaccines: a systematic review and meta-analysis. Lancet Infectious Diseases 2012; 1B2: 781789.
36. Szarewski, A, et al. Efficacy of the HPV-16/18 AS04-adjuvanted vaccine against low-risk HPV types (PATRICIA randomized trial): an unexpected observation. Journal of Infectious Diseases 2013; 208: 13911396.
37. Malagon, T, et al. Cross-protective efficacy of two human papillomavirus vaccines: a systematic review and meta-analysis. Lancet Infectious Diseases 2012; 12: 781789.
38. Tabrizi, SN, et al. Assessment of herd immunity and cross-protection after a human papillomavirus vaccination programme in Australia: a repeat cross-sectional study. Lancet Infectious Diseases 2014; 14: 958966.
39. Baldur-Felskov, B, et al. Early impact of human papillomavirus vaccination on cervical neoplasia – nationwide follow-up of young Danish women. Journal of the National Cancer Institute 2014; 106: djt460.
40. Gertig, DM, et al. Impact of a population-based HPV vaccination program on cervical abnormalities: a data linkage study. BMC Medicine 2013; 11: 227.
41. Hariri, S, et al. Reduction in HPV 16/18-associated high grade cervical lesions following HPV vaccine introduction in the United States – 2008–2012. Vaccine 2015; 33: 16081611.
42. Vidal, AC, et al. HPV genotypes and cervical intraepithelial neoplasia in a multiethnic cohort in the southeastern USA. Cancer Causes and Control 2014; 25: 10551062.
43. Safaeian, M, et al. Durable antibody responses following one dose of the bivalent human papillomavirus L1 virus-like particle vaccine in the Costa Rica Vaccine Trial. Cancer Prevention Research 2013; 6: 12421250.
44. Villa, LL, et al. High sustained efficacy of a prophylactic quadrivalent human papillomavirus types 6/11/16/18 L1 virus-like particle vaccine through 5 years of follow-up. British Journal of Cancer 2006; 95: 14591466.
45. Block, SL, et al. Comparison of the immunogenicity and reactogenicity of a prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in male and female adolescents and young adult women. Pediatrics 2006; 118: 21352145.
46. Pedersen, C, et al. Immunization of early adolescent females with human papillomavirus type 16 and 18 L1 virus-like particle vaccine containing AS04 adjuvant. Journal of Adolescent Health 2007; 40: 564571.
47. Giuliano, AR, et al. Impact of baseline covariates on the immunogenicity of a quadrivalent (types 6, 11, 16, and 18) human papillomavirus virus-like-particle vaccine. Journal of Infectious Diseases 2007; 196: 11531162.
48. Dobson, SR, et al. Immunogenicity of 2 doses of HPV vaccine in younger adolescents vs 3 doses in young women: a randomized clinical trial. Journal of the American Medical Association 2013; 309: 17931802.
49. Petaja, T, et al. Immunogenicity and safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine in healthy boys aged 10–18 years. Journal of Adolescent Health 2009; 44: 3340.
50. Einstein, MH, et al. Comparative immunogenicity and safety of human papillomavirus (HPV)-16/18 vaccine and HPV-6/11/16/18 vaccine: follow-up from months 12–24 in a Phase III randomized study of healthy women aged 18–45 years. Human Vaccines 2011; 7: 13431358.
51. Einstein, MH, et al. Comparison of the immunogenicity and safety of Cervarix and Gardasil human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18–45 years. Human Vaccines 2009; 5: 705719.
52. Barzon, L, et al. Neutralizing and cross-neutralizing antibody titres induced by bivalent and quadrivalent human papillomavirus vaccines in the target population of organized vaccination programmes. Vaccine 2014; 32: 53575362.
53. Toft, L, et al. Comparison of the immunogenicity of Cervarix® and Gardasil® human papillomavirus vaccines for oncogenic non-vaccine serotypes HPV-31, HPV-33, and HPV-45 in HIV-infected adults. Human Vaccines and Immunotherapeutics 2014; 10: 11471154.
54. Draper, E, et al. A randomized, observer-blinded immunogenicity trial of Cervarix® and Gardasil® human papillomavirus vaccines in 12–15 year old girls. PLoS One 2013; 8: e61825.
55. Villa, LL, et al. Immunologic responses following administration of a vaccine targeting human papillomavirus Types 6, 11, 16, and 18. Vaccine 2006; 24: 55715583.
56. Ferris, D, et al. Long-term study of a quadrivalent human papillomavirus vaccine. Pediatrics 2014; 134: e657e665.
57. Naud, PS, et al. Sustained efficacy, immunogenicity, and safety of the HPV-16/18 AS04-adjuvanted vaccine. Human Vaccines and Immunotherapeutics 2014; 10: 21472162.
58. Takacs, P, et al. Comparison of long-term immunogenicity and safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine and HPV-6/11/16/18 vaccine in healthy women aged 18–45 years: end-of-study analysis of a Phase III randomized trial. Human Vaccines and Immunotherapeutics 2014; e36121.
59. Wentzensen, N, et al. A competitive serological assay shows naturally acquired immunity to human papillomavirus infections in the Guanacaste Natural History Study. Journal of Infectious Diseases 2011; 204: 94102.
60. Wilson, L, et al. Seroprevalence of 8 oncogenic human papillomavirus genotypes and acquired immunity against reinfection. Journal of Infectious Diseases 2014; 210: 448455.
61. Castellsague, X, et al. Risk of newly detected infections and cervical abnormalities in women seropositive for naturally acquired human papillomavirus type 16/18 antibodies: analysis of the control arm of PATRICIA. Journal of Infectious Diseases 2014; 210: 517534.
62. Safaeian, M, et al. Cross-protective vaccine efficacy of the bivalent HPV vaccine against HPV31 is associated with humoral immune responses: results from the Costa Rica Vaccine Trial. Human Vaccines and Immunotherapeutics 2013; 9: 13991406.
63. Neuzil, KM, et al. Immunogenicity and reactogenicity of alternative schedules of HPV vaccine in Vietnam: a cluster randomized noninferiority trial. Journal of the American Medical Association 2011; 305: 14241431.
64. Kreimer, AR, et al. Proof-of-principle evaluation of the efficacy of fewer than three doses of a bivalent HPV16/18 vaccine. Journal of the National Cancer Institute 2011; 103: 14441451.
65. Herweijer, E, et al. Association of varying number of doses of quadrivalent human papillomavirus vaccine with incidence of condyloma. Journal of the American Medical Association 2014; 311: 597603.
66. Noronha, AS, Markowitz, LE, Dunne, EF. Systematic review of human papillomavirus vaccine coadministration. Vaccine 2014; 32: 26702674.
67. Rowhani-Rahbar, A, et al. Longer term efficacy of a prophylactic monovalent human papillomavirus type 16 vaccine. Vaccine 2009; 27: 56125619.
68. Castle, PE, et al. A prospective study of age trends in cervical human papillomavirus acquisition and persistence in Guanacaste, Costa Rica. Journal of Infectious Diseases 2005; 191: 18081816.
69. Franceschi, S, et al. Variations in the age-specific curves of human papillomavirus prevalence in women worldwide. International Journal of Cancer 2006; 119: 26772684.
70. Tabrizi, SN, et al. Fall in human papillomavirus prevalence following a national vaccination program. Journal of Infectious Diseases 2012; 206: 16451651.
71. Crowe, E, et al. Effectiveness of quadrivalent human papillomavirus vaccine for the prevention of cervical abnormalities: case-control study nested within a population based screening programme in Australia. British Medical Journal 2014; 348: g1458.
72. Read, TR, et al. The near disappearance of genital warts in young women 4 years after commencing a national human papillomavirus (HPV) vaccination programme. Sexually Transmitted Infections 2011; 87: 544547.
73. Donovan, B, et al. Quadrivalent human papillomavirus vaccination and trends in genital warts in Australia: analysis of national sentinel surveillance data. Lancet Infectious Diseases 2011; 11: 3944.
74. Markowitz, LE, et al. Reduction in human papillomavirus (HPV) prevalence among young women following HPV vaccine introduction in the United States, National Health and Nutrition Examination Surveys, 2003–2010. Journal of Infectious Diseases 2013; 208: 385393.
75. Hariri, S, et al. Population-based trends in high-grade cervical lesions in the early human papillomavirus vaccine era in the United States. Cancer 2015; 121: 27752781.
76. Drolet, M, et al. Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infectious Diseases 2015; 15: 565580.
77. Ali, H, et al. Genital warts in young Australians five years into national human papillomavirus vaccination programme: national surveillance data. British Medical Journal. Published online: 18 April 2013. doi:10.1136/bmj.f2032.
78. Giuliano, AR, et al. Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. New England Journal of Medicine 2011; 364: 401411.
79. Palefsky, JM, et al. HPV vaccine against anal HPV infection and anal intraepithelial neoplasia. New England Journal of Medicine 2011; 365: 15761585.
80. Kreimer, AR, et al. Efficacy of a bivalent HPV 16/18 vaccine against anal HPV 16/18 infection among young women: a nested analysis within the Costa Rica Vaccine Trial. Lancet Oncology 2011; 12: 862870.
81. Herrero, R, et al. Reduced prevalence of oral human papillomavirus HPV) 4 years after bivalent HPV vaccination in a randomized clinical trial in Costa Rica. PLoS ONE 2013; 8: e68329.
82. Lowy, DR, Schiller, JT. Prophylactic human papillomavirus vaccines. Journal of Clinical Investigation 2006; 116: 11671173.
83. Grulich, AE, et al. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 2007; 370: 5967.
84. Giacomet, V, et al. Safety and immunogenicity of a quadrivalent human papillomavirus vaccine in HIV-infected and HIV-negative adolescents and young adults. Vaccine 2014; 32: 56575661.
85. Wilkin, T, et al. Safety and immunogenicity of the quadrivalent human papillomavirus vaccine in HIV-1-infected men. Journal of Infectious Diseases 2010; 202: 12461253.
86. Gomez-Lobo, V, et al. Immunogenicity of a prophylactic quadrivalent human papillomavirus L1 virus-like particle vaccine in male and female adolescent transplant recipients. Pediatric Transplantation 2014; 18: 310315.
87. Kumar, D, et al. Immunogenicity of quadrivalent human papillomavirus vaccine in organ transplant recipients. American Journal of Transplantion 2013; 13: 24112417.
88. Anon. Evaluation of safety and immunogenicity of a human papillomavirus (HPV) vaccine in human immunodeficiency virus (HIV) infected females, 2014 (http://clinicaltrials.gov/ct2/show/NCT01031069?term=HIV+HPV+vaccination&rank=11). Accessed 23 August 2015.
89. Okwen, MP, et al. Hepatitis B vaccination for reducing morbidity and mortality in persons with HIV infection. Cochrane Database of Systematic Reviews. Published online: 9 October 2014. doi:10.1002/14651858.CD009886.pub2
90. Kreimer, AR, et al. Efficacy of fewer than three doses of an HPV-16/18 AS04-adjuvanted vaccine: combined analysis of data from the Costa Rica Vaccine and PATRICIA trials. Lancet Oncology 2015; 16: 775786.
91. Kreimer, AR, Safaeian, M, Hildesheim, A. Number of human papillomavirus vaccine doses and condyloma. Journal of the American Medical Association 2014; 311: 2439.
92. Blomberg, M, et al. Dose-related differences in effectiveness of human papillomavirus vaccination against genital warts: a nationwide study of 550000 young girls. Clinical Infectious Diseases 2015; 61: 676682.
93. Kemp, TJ, et al. Kinetic and HPV infection effects on cross-type neutralizing antibody and avidity responses induced by Cervarix® . Vaccine 2012; 31: 165170.
94. WHO. Evidence based recommendations on human papilloma virus (HPV) vaccine schedules, 2014. World Health Organization. 5–27–2014. (http://www.who.int/immunization/sage/meetings/2014/april/1_HPV_Evidence_based_recommendationsWHO_with_Appendices2_3.pdf). Accessed 23 August 2015.
96. Petrosky, E, et al. Use of 9-valent human papillomavirus (HPV) vaccine: updated HPV vaccination recommendations of the advisory Committee on Immunization Practices. Morbidity and Mortality Weekly Report 2015; 64: 300304.
100. Arnheim-Dahlstrom, L, et al. Autoimmune, neurological, and venous thromboembolic adverse events after immunisation of adolescent girls with quadrivalent human papillomavirus vaccine in Denmark and Sweden: cohort study. British Medical Journal 2013; 347: f5906.
101. Harris, T, et al. Adverse events following immunization in Ontario's female school-based HPV program. Vaccine 2014; 32: 10611066.
102. Gee, J, et al. Monitoring the safety of quadrivalent human papillomavirus vaccine: findings from the Vaccine Safety Datalink. Vaccine 2011; 29: 82798284.
103. CDC. Human papillomavirus vaccination coverage among adolescent girls, 2007–2012, and postlicensure vaccine safety monitoring, 2006–2. Morbidity and Mortality Weekly Report 2013; 62: 591595.
104. Anon. Global Advisory Committee on Vaccine Safety. Statement on the continued safety of HPV vaccination. 2014 (http://www.who.int/vaccine_safety/committee/topics/hpv/GACVS_Statement_HPV_12_Mar_2014.pdf). Accessed 9 November 2014.
105. Anon. FDA approves Gardasil 9 for prevention of certain cancers caused by five additional types of HPV. 2015 (http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm426485.htm). Accessed 3 April 2015.
106. Joura, EA, et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. New England Journal of Medicine 2015; 372: 711723.
107. Kosalaraksa, P, et al. An open-label, randomized study of a 9-valent human papillomavirus vaccine given concomitantly with diphtheria, tetanus, pertussis, and poliomyelitis vaccines to healthy adolescents 11 to 15 years of age. Pediatric Infectious Diseases Journal 2015; 34: 627634.
108. Roden, RB, et al. Minor capsid protein of human genital papillomaviruses contains subdominant, cross-neutralizing epitopes. Virology 2000; 270: 254257.
109. Gambhira, R, et al. Vaccination of healthy volunteers with human papillomavirus type 16 L2E7E6 fusion protein induces serum antibody that neutralizes across papillomavirus species. Cancer Research 2006; 66: 1112011124
110. Gambhira, R, et al. A protective and broadly cross-neutralizing epitope of human papillomavirus L2. Journal of Virology 2007; 81: 1392713931.
111. Gambhira, R, et al. Protection of rabbits against challenge with rabbit papillomaviruses by immunization with the N terminus of human papillomavirus type 16 minor capsid antigen L2. Journal of Virology 2007; 81: 11585–92.
112. Jagu, S, et al. Concatenated multitype L2 fusion proteins as candidate prophylactic pan-human papillomavirus vaccines. Journal of the National Cancer Institute 2009; 101: 782792.
113. Varsani, A, et al. Chimeric human papillomavirus type 16 (HPV-16) L1 particles presenting the common neutralizing epitope for the L2 minor capsid protein of HPV-6 and HPV-16. Journal of Virology 2003; 77: 83868393.
114. Schellenbacher, C, Roden, R, Kirnbauer, R. Chimeric L1-L2 virus-like particles as potential broad-spectrum human papillomavirus vaccines. Journal of Virology 2009; 83: 1008510095.
115. Nieto, K, et al. Development of AAVLP(HPV16/31L2) particles as broadly protective HPV vaccine candidate. PLoS ONE 2012; 7: e39741.
116. Nieto, K, et al. Intranasal vaccination with AAV5 and 9 vectors against human papillomavirus type 16 in rhesus macaques. Human Gene Therapy 2012; 23: 733741.
117. Varsani, A, et al. Expression of Human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv. Xanthi. Archives of Virology 2003; 148: 17711786.
118. Smith, ML, et al. Modified tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications. Virology 2006; 348: 475488.
119. Tyler, M, et al. Immunization with a consensus epitope from human papillomavirus L2 induces antibodies that are broadly neutralizing. Vaccine 2014; 32: 42674274.
120. Tyler, M, et al. The use of hybrid virus-like particles to enhance the immunogenicity of a broadly protective HPV vaccine. Biotechnology and Bioengineering 2014; 111: 23982406.
121. Burger, EA, et al. Too late to vaccinate? The incremental benefits and cost-effectiveness of a delayed catch-up program using the 4-valent human papillomavirus vaccine in Norway. Journal of Infectious Diseases 2015; 211: 206215.
122. Kim, JJ, Goldie, SJ. Health and economic implications of HPV vaccination in the United States. New England Journal of Medicine 2008; 359: 821832.
123. Tsu, V, Murray, M, Franceschi, S. Human papillomavirus vaccination in low-resource countries: lack of evidence to support vaccinating sexually active women. British Journal of Cancer 2012; 107: 14451450.
124. Burger, EA, et al. Prevention of HPV-related cancers in Norway: cost-effectiveness of expanding the HPV vaccination program to include pre-adolescent boys. PLoS ONE 2014; 9: e89974.
125. Kim, JJ, Goldie, SJ. Cost effectiveness analysis of including boys in a human papillomavirus vaccination programme in the United States. British Medical Journal 2009; 339: b3884.
126. Pearson, AL, et al. Is expanding HPV vaccination programs to include school-aged boys likely to be value-for-money: a cost-utility analysis in a country with an existing school-girl program. BMC Infectious Diseases 2014; 14: 351.
127. Brisson, M, et al. Incremental impact of adding boys to current human papillomavirus vaccination programs: role of herd immunity. Journal of Infectious Diseases 2011; 204: 372376.
128. Chesson, HW, et al. The cost-effectiveness of male HPV vaccination in the United States. Vaccine 2011; 29: 84438450.
129. Conway, EL, Regan, DG. Expanding the national HPV immunisation program to include males: a health-economic approach and decision-making. HPV Today, 2013. (http://www.hpvtoday.com/revista2829/16-expanding-the-national-hpv-immunisation-program-to-include-males-health-economic-approach-and-decision-making.html). Accessed 23 August 2015.
130. Jemal, A, et al. Annual Report to the Nation on the Status of Cancer, 1975–2009, featuring the burden and trends in human papillomavirus(HPV)-associated cancers and HPV vaccination coverage levels. Journal of the National Cancer Institute 2013; 105: 175201.
131. Scarinci, IC, et al. Cervical cancer prevention: new tools and old barriers. Cancer 2010; 116: 25312542.
132. Gage, JC, Castle, PE. Preventing cervical cancer globally by acting locally: if not now, when? Journal of the National Cancer Institute 2010; 102: 15241527.
133. Wright, TC Jr., et al. Evaluation of HPV-16 and HPV-18 genotyping for the triage of women with high-risk HPV+ cytology-negative results. American Journal of Clinical Pathology 2011; 136: 578586.
134. Stoler, MH, et al. APTIMA HPV assay performance in women with atypical squamous cells of undetermined significance cytology results. American Journal of Obstetrics and Gynecology 2013; 208: 144148.
135. Khan, MJ, et al. The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type-specific HPV testing in clinical practice. Journal of the National Cancer Institute 2005; 97: 10721079.
136. de, Sanjose S, et al. Age-specific occurrence of HPV16- and HPV18-related cervical cancer. Cancer Epidemiology, Biomarkers and Prevention 2013; 22: 13131318.
137. Sasieni, P, Castanon, A, Cuzick, J. Effectiveness of cervical screening with age: population based case-control study of prospectively recorded data. British Medical Journal 2009; 339: b2968.
138. Katki, HA, et al. Benchmarking CIN 3+ risk as the basis for incorporating HPV and Pap cotesting into cervical screening and management guidelines. Journal of Lower Genital Tract Disease 2013; 17: S28S35.
139. Ikenberg, H, et al. Screening for cervical cancer precursors with p16/Ki-67 dual-stained cytology: results of the PALMS study. Journal of the National Cancer Institute 2013; 105: 15501557.
140. Qiao, YL, et al. Lower cost strategies for triage of human papillomavirus DNA-positive women. International Journal of Cancer 2014; 134: 28912901.
141. Mirabello, L, et al. Methylation of human papillomavirus type 16 genome and risk of cervical precancer in a Costa Rican population. Journal of the National Cancer Institute 2012; 104: 556565.
142. Wentzensen, N, et al. Methylation of HPV18, HPV31, and HPV45 genomes and cervical intraepithelial neoplasia grade 3. Journal of the National Cancer Institute 2012; 104: 17381749.
143. Franceschi, S, et al. Eurogin 2010 roadmap on cervical cancer prevention. International Journal of Cancer 2011; 128: 27652774.
144. Kovacic, MB, et al. Relationships of human papillomavirus type, qualitative viral load, and age with cytologic abnormality. Cancer Research 2006; 66: 10112–1019.
145. Wentzensen, N, et al. No evidence for synergy between human papillomavirus genotypes for the risk of high-grade squamous intraepithelial lesions in a large population-based study. Journal of Infectious Diseases 2014; 209: 855864.
146. Joste, NE, et al. Human papillomavirus genotype-specific prevalence across the continuum of cervical neoplasia and cancer. Cancer Epidemiology, Biomarkers and Prevention 2015; 24: 230240.
147. Kinde, I, et al. Evaluation of DNA from the Papanicolaou test to detect ovarian and endometrial cancers. Science Translational Medicine 2013; 5: 167ra4.
149. Jit, M, et al. Cost-effectiveness of female human papillomavirus vaccination in 179 countries: a PRIME modelling study. Lancet Global Health 2014; 2: e406e414.
150. El-Kak, F. Sexuality and sexual health: constructs and expressions in the extended Middle East and North Africa. Vaccine 2013; 31 (Suppl. 6): G4550.
151. Vaccarella, S, Bruni, L, Seoud, M. Burden of human papillomavirus infections and related diseases in the extended Middle East and North Africa region. Vaccine 2013; 31 (Suppl. 6): G3244.
152. Binagwaho, A, et al. Achieving high coverage in Rwanda's national human papillomavirus vaccination programme. Bulletin of the World Health Organization 2012; 90: 623628.
154. Anon. GDP per capita (current US$). 2014 (http://databank.worldbank.org/data/views/reports/tableview.aspx). Accessed 23 December 2014.
155. Ferlay, J, et al. GLOBOCAN 2012 v. 1·0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11. 2013. Lyon, France, International Agency for Research on Cancer.
157. Suba, EJ, Raab, SS. HPV vaccination: waiting for evidence of effectiveness. Lancet 2010; 375: 639640.

Keywords

Related content

Powered by UNSILO

Prophylactic HPV vaccination: past, present, and future

  • P. E. CASTLE (a1) (a2) and M. MAZA (a3)
  • Please note a correction has been issued for this article.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

A correction has been issued for this article: