Skip to main content Accessibility help
×
Home

Proper pertussis vaccination will probably not increase vaccination coverage: a case–control study

  • R. Solano (a1), A. V. Sanchez-Callejas (a1), M. I. Alvarez-Ibañez (a2), M. Sandiumenge-Durán (a3) and M. I. Fernández-San-Martín (a1)...

Abstract

Vaccination coverage (VC) against pertussis can increase when management practices and policies at primary care centres (PCCs) are reinforced. From 2011 to 2015, we performed a case–control study to evaluate VC among pertussis patients treated at PCCs in Barcelona, Spain. We recorded pertussis in patients from 8- to 16-year-olds at 52 PCCs. Pertussis cases had laboratory diagnostic and controls were healthy outpatients visiting the same facility for reasons other than cough. DTaP/dTap VC was recorded as either proper vaccination status (five doses recorded) or improper vaccination status (<5 doses recorded). We used a logistic regression model to estimate OR and 95% CI. We included 229 cases and 576 controls. VC was higher in cases (mean 5.01, s.e.: 0.57) than in controls (4.89, s.e.: 0.73). Around 69% of the cases had received DTaP primary immunisation after 2–5 years and 31.4% of cases had the dTap booster immunisation after 7–10 years. The 87% of children 5–9 years were properly vaccinated. We found no protection from becoming ill among properly vaccinated children (OR 1.87; 95% CI 1.22–2.85). The highest VC was observed in patients with confirmed pertussis, which was likely due to a more exhaustive follow-up of the VC in these patients. Being properly vaccinated against pertussis will probably not increase VC.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Proper pertussis vaccination will probably not increase vaccination coverage: a case–control study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Proper pertussis vaccination will probably not increase vaccination coverage: a case–control study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Proper pertussis vaccination will probably not increase vaccination coverage: a case–control study
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: R. Solano, E-mail: rsolanosilveira@gmail.com

References

Hide All
1.Chambers, C et al. (2014) Pertussis surveillance trends in British Columbia, Canada, over a 20-year Period: 1993–2013. Canada Communicable Disease Report 40, 3141.
2Black, RE et al. (2010) Pertussis vaccines: WHO position paper. The Weekly Epidemiological Record 85, 385400.
3.Paksu, MS et al. (2013) Fulminant pertussis in very young infants: two cases and review of the literature. The Turkish Journal of Pediatrics 55, 426429.
4.Díez-Domingo, J et al. (2004) Incidence of pertussis in persons < or =15 years of age in Valencia, Spain: seroprevalence of antibodies to pertussis toxin (PT) in children, adolescents and adults. Journal of Infection 49, 242247.
5.Gil, A et al. (2001) Hospital admissions for pertussis in Spain, 1995–1998. Vaccine 19, 47914794.
6.Comité asesor de vacunas de la Asociación Española de Pediatría (2006) Calendario de vacunación de la Asociación Española de Pediatría: recomendaciones 2006. Anales de Pediatría 64, 7477.
7.Grupo de trabajo tos ferina 2012 (2013) De la ponencia de programas y registro de vacunaciones. Revisión del programa de vacunación frente a tos ferina en España. Comisión de Salud Pública del Consejo Interterritorial del Sistema Nacional de Salud. Ministerio de Sanidad, Servicios Sociales e Igualdad. Available at https://www.msssi.gob.es/profesionales/saludPublica/prevPromocion/vacunaciones/difteria_tetano_tosferina.htm (Accessed 11 March 2018).
8.Ministerio de Sanidad, Servicios Sociales e Igualdad. Coberturas de vacunación. Datos estadísticos. Available at https://www.msssi.gob.es/profesionales/saludPublica/prevPromocion/vacunaciones/coberturas.htm (Accessed 20 July 2018).
9.Briss, PA et al. (2000) Reviews of evidence regarding interventions to improve vaccination coverage in children, adolescents, and adults. The Task Force on Community Preventive Services. American Journal of Preventive Medicine 18, 97140.
10.Szilagyi, PG et al. (2000) Effect of patient reminder/recall interventions on immunization rates: a review. Journal of the American Medical Association 284, 18201827.
11.Fiks, AG et al. (2013) Effectiveness of decision support for families, clinicians, or both on HPV vaccine receipt. Pediatrics 131, 11141124.
12.World Health Organization. Immunization, vaccines and biologicals. Available at http://www.who.int/immunization/topics/pertussis/en/ (Accessed 12 July 2016).
13.Centro Nacional de Epidemiología (2013) Instituto de Salud Carlos III. Red Nacional de Vigilancia Epidemiológica. Protocolos de enfermedades de declaración obligatoria. Madrid. Available at http://www.isciii.es/ISCIII/es/contenidos/fd-servicios-cientifico-tecnicos/fd-vigilancias-alertas/fd-procedimientos/protocolos.shtml (Accessed 11 March 2018).
14.Guiso, N et al. (2016) Surveillance of pertussis: methods and implementation. Expert Review of Anti-infective Therapy 14, 657667.
15.Espy, MJ et al. (2006) Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clinical Microbiology Reviews 19, 165256.
16.Guiso, N et al. (2011) What to do and what not to do in serological diagnosis of pertussis: recommendations from EU reference laboratories. European Journal of Clinical Microbiology 30, 307312.
17.Estimation of the sample size, software GRANMO version 7.12. Available at https://www.imim.cat/ofertadeserveis/software-public/granmo/ (Accessed 13 April 2013).
18.Campins, M et al. (2013) Whooping cough in Spain. Current epidemiology, prevention and control strategies. Recommendations by the Pertussis Working Group. Enfermedades Infecciosas y Microbiología Clínica 31, 240253.
19.Taranger, J et al. (1997) Unchanged efficacy of a pertussis toxoid vaccine throughout the two years after the third vaccination of infants. The Pediatric Infectious Disease Journal 16, 180184.
20.Simondon, F et al. (1997) A randomized double-blind trial comparing a two-component acellular to a whole-cell pertussis vaccine in Senegal. Vaccine 15, 16061612.
21.Salmaso, S et al. (2001) Sustained efficacy during the first 6 years of life of 3-component acellular pertussis vaccines administered in infancy: the Italian experience. Pediatrics 108, E81.
22.Guiso, N et al. (2017) Whooping cough surveillance in France in pediatric private practice in 2006–2015. Vaccine 35, 60836088.
23.Domenech de Cellès, M et al. (2018) The impact of past vaccination coverage and immunity on pertussis resurgence. Science Translational Medicine 10, 434.
24.Radke, S et al. (2017) Age-specific effectiveness following each dose of acellular pertussis vaccine among infants and children in New Zealand. Vaccine 35, 177183.
25.Rigo-Medrano, MV et al. (2016) Acellular vaccines (DTPa/dTpa) against whooping cough, protection duration. Enfermedades Infecciosas y Microbiología Clínica 34, 2328.
26.Robert, E et al. (2014) Vaccination coverage for infants: cross-sectional studies in two regions of Belgium. BioMed Research International 2014, 838907.
27.Barber, A et al. (2017) Coverage with tetanus, diphtheria, and acellular pertussis vaccine and influenza vaccine among pregnant women – Minnesota, March 2013-December 2014. Morbidity and Mortality Weekly Report 66, 5659.
28.Hill, HA et al. (2016) Vaccination coverage among children aged 19–35 months – United States, 2015. Morbidity and Mortality Weekly Report 65, 10651071.
29.Winter, K et al. (2015) Risk factors associated with infant deaths from pertussis: a case-control study. Clinical Infectious Diseases 61, 10991106.
30.Warfel, JM et al. (2014) Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proceedings of the National Academy of Sciences of the USA 111, 787792.
31.McNamara, LA et al. (2017) Reduced severity of pertussis in persons with age-appropriate pertussis vaccination-United States, 2010–2012. Clinical Infectious Diseases 65, 811818.
32.Zycinska, K et al. (2017) Whooping cough in adults: a series of severe cases. Advances in Experimental Medicine and Biology 955, 4750.
33.Moreno Samos, M et al. (2015) Incidence and severity of pertussis in infants with a respiratory syncytial virus infection. Enfermedades Infecciosas y Microbioliología Clínica 33, 476479.
34.Reinton, N et al. (2013) Respiratory tract infections during the 2011 Mycoplasma pneumoniae epidemic. European Journal of Clinical Microbiology & Infectious Diseases 32, 835840.
35.Koepke, R et al. (2014) Estimating the effectiveness of tetanus-diphtheria-acellular pertussis vaccine (Tdap) for preventing pertussis: evidence of rapidly waning immunity and difference in effectiveness by Tdap brand. The Journal of Infectious Diseases 210, 942953.
36.Klein, NP et al. (2017) Waning protection following 5 doses of a 3-component diphtheria, tetanus, and acellular pertussis vaccine. Vaccine 35, 33953400.
37.Vermeulen, F et al. (2013) Persistence at one year of age of antigen-induced cellular immune responses in preterm infants vaccinated against whooping cough: comparison of three different vaccines and effect of a booster dose. Vaccine 31, 19811986.
38.Edelman, KJ et al. (2004) Pertussis-specific cell-mediated and humoral immunity in adolescents 3 years after booster immunization with acellular pertussis vaccine. Clinical Infectious Diseases 39, 179185.
39.Lu, PJ et al. (2017) Impact of provider recommendation on Tdap vaccination of adolescents aged 13–17 years. American Journal of Preventive Medicine 53, 373384.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed