Skip to main content Accessibility help
×
Home

A prevalence study of Salmonella spp., Yersinia spp., Toxoplasma gondii and porcine reproductive and respiratory syndrome virus in UK pigs at slaughter

  • L. F. POWELL (a1), T. E. A. CHENEY (a1), S. WILLIAMSON (a2), E. GUY (a3), R. P. SMITH (a1) and R. H. DAVIES (a4)...

Summary

An abattoir-based study was undertaken between January and May 2013 to estimate the prevalence of Salmonella spp. and Yersinia spp. carriage and seroprevalence of antibodies to Toxoplasma gondii and porcine reproductive and respiratory syndrome virus (PRRSv) in UK pigs at slaughter. In total, 626 pigs were sampled at 14 abattoirs that together process 80% of the annual UK pig slaughter throughput. Sampling was weighted by abattoir throughput and sampling dates and pig carcasses were randomly selected. Rectal swabs, blood samples, carcass swabs and the whole caecum, tonsils, heart and tongue were collected. Salmonella spp. was isolated from 30·5% [95% confidence interval (CI) 26·5–34·6] of caecal content samples but only 9·6% (95% CI 7·3–11·9) of carcass swabs, which was significantly lower than in a UK survey in 2006–2007. S. Typhimurium and S. 4,[5],12:i:- were the most commonly isolated serovars, followed by S. Derby and S. Bovismorbificans. The prevalence of Yersinia enterocolitica carriage in tonsils was 28·7% (95% CI 24·8–32·7) whereas carcass contamination was much lower at 1·8% (95% CI 0·7–2·8). The seroprevalence of antibodies to Toxoplasma gondii and PRRSv was 7·4% (95% CI 5·3–9·5) and 58·3% (95% CI 53·1–63·4), respectively. This study provides a comparison to previous abattoir-based prevalence surveys for Salmonella and Yersinia, and the first UK-wide seroprevalence estimates for antibodies to Toxoplasma and PRRSv in pigs at slaughter.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A prevalence study of Salmonella spp., Yersinia spp., Toxoplasma gondii and porcine reproductive and respiratory syndrome virus in UK pigs at slaughter
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A prevalence study of Salmonella spp., Yersinia spp., Toxoplasma gondii and porcine reproductive and respiratory syndrome virus in UK pigs at slaughter
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A prevalence study of Salmonella spp., Yersinia spp., Toxoplasma gondii and porcine reproductive and respiratory syndrome virus in UK pigs at slaughter
      Available formats
      ×

Copyright

Corresponding author

* Author for correspondence: Dr R. P. Smith, Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK. (Email: richard.p.smith@apha.gsi.gov.uk)

References

Hide All
1. FSA. Foodborne Disease Strategy 2010–2015, v. 1.0. Food Standards Agency, London, 2011.
2. EFSA and ECDC. The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2012. EFSA Journal 2014; 12: 3547.
3. Tam, C, Larose, T, O'Brien, SJ. Extension to the second study of infectious intestinal disease in the community (IID2 study): identifying the proportion of foodborne disease in the UK and attributing foodborne disease by food commodity. Food Standards Agency, London, 2014.
4. O'Brien, SJ. The ‘decline and fall’ of nontyphoidal salmonella in the United Kingdom. Clinical Infectious Diseases 2012; 56: 705710.
5. Anon. Scientific Opinion on an estimation of the public health impact of setting a new target for the reduction of salmonella in turkeys. EFSA Journal 2012; 10: 2616.
6. Pires, SM, de Knegt, L, Hald, T. Scientific/Technical report submitted to EFSA. Estimation of the relative contribution of different food and animal sources to human salmonella infections in the European Union. National Food Institute, Technical University of Denmark, 2011.
7. Anon. Report of the Task Force on Zoonoses Data Collection on the analysis of the baseline survey on the prevalence of salmonella in slaughter pigs, Part A. EFSA Journal 2008; 135: 1111.
8. Marier, EA, et al. Abattoir based survey of salmonella in finishing pigs in the United Kingdom 2006–2007. Preventive Veterinary Medicine 2014; 117: 542553.
9. Paiba, G, Armstrong, D, Wight, A. National control programme for salmonella in pigs. Veterinary Record 2011; 168: 569.
10. Anon. Scientific Opinion on the public health hazards to be covered by inspection of meat (swine). EFSA Journal 2011; 9: 2351.
11. Fredriksson-Ahomaa, M, et al. Sporadic human Yersinia enterocolitica infections caused by bioserotype 4/O:3 originate mainly from pigs. Journal of Medical Microbiology 2006; 55: 747749.
12. Milnes, AS, et al. Intestinal carriage of verocytotoxigenic Escherichia coli O157, salmonella, thermophilic campylobacter and Yersinia enterocolitica, in cattle, sheep and pigs at slaughter in Great Britain during 2003. Epidemiology and Infection 2008; 136: 739751.
13. McNally, A et al. Comparison of the biotypes of Yersinia enterocolitica isolated from pigs, cattle and sheep at slaughter and from humans with yersiniosis in Great Britain during 1999–2000. Letters in Applied Microbiology 2004; 39: 103108.
14. Rosner, BM, Stark, K, Werber, D. Epidemiology of reported Yersinia enterocolitica infections in Germany, 2001–2008. BMC Public Health 2010; 10: 337.
16. Anon. Technical specifications for harmonised national surveys of Yersinia enterocolitica in slaughter pigs on request of EFSA. EFSA Journal 2009; 7: 1374.
17. Anon. Risk profile in relation to toxoplasma in the food chain. Advisory Committee on the Microbiological Safety of Food (ACMSF), London, 2011 (http://multimedia.food.gov.uk/multimedia/pdfs/committee/acmsfrtaxopasm.pdf).
18. Hutchinson, JP, et al. Survey to determine the seroprevalence of Toxoplasma gondii infection in British sheep flocks. Veterinary Record 2011; 169: 582.
19. Richardson, JS. The cost of endemic disease in pig production. The Pig Journal 2011; 65: 1017.
20. Grimont, PAD, Weill, F. Antigenic Formulae of the Salmonella Serovars, 9th edn. WHO Collaborating Centre for Reference and Research on Salmonella. Pasteur Institute, Paris, 2007.
21. Anderson, ES, et al. Bacteriophage-typing designations of Salmonella typhimurium. Journal of Hygiene 1977; 78: 297300.
22. Reiter-Owona, I, et al. The past and present role of the Sabin-Feldman dye test in the serodiagnosis of toxoplasmosis. Bulletin of the World Health Organisation 1999; 77: 929935.
23. Anon. BPEX yearbook 2014–2015. BPEX, UK, 2015 (http://pork.ahdb.org.uk/media/73777/bpex-yearbook-2015.pdf).
24. Davies, RH, et al. National survey for salmonella in pigs, cattle and sheep at slaughter in Great Britain (1999–2000). Journal of Applied Microbiology 2004; 96: 750760.
25. Anon. Analysis of the baseline survey on the prevalence of salmonella in holdings with breeding pigs, in the EU, 2008, Part A: Salmonella prevalence estimates. EFSA Journal 2009; 7: 93 pp.
26. Botteldoorn, N, et al. Salmonella on pig carcasses: positive pigs and cross contamination in the slaughterhouse. Journal of Applied Microbiology 2003; 95: 891903.
27. Sorensen, LL, et al. The correlation between salmonella serology and isolation of salmonella in Danish pigs at slaughter. Veterinary Microbiology 2004; 101: 131141.
28. McDowell, SW, et al. Salmonella in slaughter pigs in Northern Ireland: prevalence and use of statistical modelling to investigate sample and abattoir effects. International Journal of Food Microbiology 2007; 118: 116125.
29. Berends, BR, et al. Identification and quantification of risk factors regarding Salmonella spp. on pork carcasses. International Journal of Food Microbiology 1997; 36: 199206.
30. Arnold, ME, Cook, A, Davies, R. A modelling approach to estimate the sensitivity of pooled faecal samples for isolation of salmonella in pigs. Journal of The Royal Society Interface 2005; 2: 365372.
31. Anon. Scientific Opinion on monitoring and assessment of the public health risk of ‘Salmonella Typhimurium-like’ strains. EFSA Journal 2010; 8: 18261874.
32. HPA. Outbreaks of Salmonella Typhimurium DT 12 and DT 193 associated with hog roasts in the South West Region in April 2011. Health Protection Report 5(21), 2011.
33. Paranthaman, KS, et al. Emergence of a multidrug-resistant (ASSuTTm) strain of Salmonella enterica serovar Typhimurium DT120 in England in 2011 and the use of multiple-locus variable-number tandem-repeat analysis in supporting outbreak investigations. Foodborne Pathogens and Diseases 2013; 10: 850855.
34. Gilsdorf, A, et al. A nationwide outbreak of Salmonella Bovismorbificans PT24, Germany, December 2004-March 2005. Eurosurveillance 2005; 10: 2667.
35. Rimhanen-Finne, R, et al. A nationwide outbreak of Salmonella Bovismorbificans associated with sprouted alfalfa seeds in Finland, 2009. Zoonoses and Public Health 2011; 58: 589596.
36. CDC. Multistate outbreak of Salmonella serotype Bovismorbificans infections associated with hummus and tahini – United States, 2011. Morbidity and Mortality Weekly Report 2012; 61: 944947.
37. Chiu, CH, Su, LH, Chu, C. Salmonella enterica serotype Choleraesuis: epidemiology, pathogenesis, clinical disease, and treatment. Clinical Microbiology Reviews 2004; 17: 311322.
38. Jackson, MH, Hutchison, WM, Siim, JC. Prevalence of T. gondii in meat animals, cats and dogs in central Scotland. British Veterinary Journal 1987; 143: 159165.
39. McColm, AA, Hutchinson, WM, Sum, JC. The prevalence of T. gondii in meat animals and cats in central Scotland. Annals of Tropical Medicine and Parasitology 1981; 75: 157164.
40. Halova, D, et al. Toxoplasma gondii in Ireland: Seroprevalence and Novel Molecular Detection Method in Sheep, Pigs, Deer and Chickens. Zoonoses and Public Health 2013; 60: 168173.
41. Garcia-Bocanegra, I, et al. Seroprevalence and risk factors associated with Toxoplasma gondii in domestic pigs from Spain. Parasitology International 2010; 59: 421426.
42. Berger-Schoch, AE, et al. Toxoplasma gondii in Switzerland: a serosurvey based on meat juice analysis of slaughtered pigs, wild boar, sheep and cattle. Zoonoses and Public Health 2011; 58: 472478.
43. Bartova, E, Sedlak, K. Seroprevalence of Toxoplasma gondii and Neospora caninum in slaughtered pigs in the Czech Republic. Parasitology 2011; 138: 13691371.
44. Anon. Scientific Opinion of the Panel on Biological Hazards on a request from EFSA on Surveillance and monitoring of toxoplasma in humans, foods and animals. EFSA Journal 2007; 583: 164.
45. Bhaduri, S, Wesley, IV, Bush, EJ. Prevalence of Pathogenic Yersinia enterocolitica Strains in Pigs in the United States. Applied Environmental Microbiology 2005; 71: 71177121.
46. Bonardi, SL, et al. Prevalence, characterization and antimicrobial susceptibility of Salmonella enterica and Yersinia enterocolitica in pigs at slaughter in Italy. International Journal of Food Microbiology 2013; 163: 248257.
47. Richardson, JS. Porcine reproductive and respiratory syndrome (PRRS) – Its impact on pig performance, prevalence and control. The Pig Journal 2004; 53: 176187.
48. Velasova, M, et al. Risk factors for porcine reproductive and respiratory syndrome virus infection and resulting challenges for effective disease surveillance. BMC Veterinary Research 2012; 8: 184.
49. Evans, CM, Medley, GF, Green, LE. Porcine reproductive and respiratory syndrome virus (PRRSV) in GB pig herds: farm characteristics associated with heterogeneity in seroprevalence. BMC Veterinary Research 2008; 4: 48.
50. Anon. Pig health and welfare: A vision for 2020. BPEX, UK, 2011 (http://pork.ahdb.org.uk/media/2233/2020-pig-health-and-welfare.pdf).
51. Beloeil, PA, et al. Risk factors for Salmonella enterica subsp. enterica shedding by market-age pigs in French farrow-to-finish herds. Preventive Veterinary Medicine 2004; 63: 103120.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed