Skip to main content Accessibility help
×
Home

Prevalence and incidence of hepatitis C in injecting drug users attending genitourinary medicine clinics

  • M. A. BALOGUN (a1), N. MURPHY (a2), S. NUNN (a3), A. GRANT (a3), N. J. ANDREWS (a3), C. G. TEO (a2), M. E. RAMSAY (a1) and J. V. PARRY (a2) (a4)...

Summary

Surveillance reports and prevalence studies have indicated that injecting drug users (IDUs) contribute more to the hepatitis C epidemic in the United Kingdom than any other risk group. Information on both the prevalence and incidence of hepatitis C in IDUs is therefore essential to understanding the epidemiology of this infection. The prevalence of hepatitis C in specimens from the Unlinked Anonymous Prevalence Monitoring Programme collected in 1995, 1996, 1998, 1999, 2000, and 2001 was determined using residual syphilis serology specimens from IDUs attending 15 genitourinary medicine (GUM) clinics in and outside London. These specimens were tested for antibodies to hepatitis C virus (anti-HCV). Using this cross-sectional design, anti-HCV-negative specimens were tested for HCV RNA to identify incident infections during the ‘window’ period of infection, and thus to estimate HCV incidence. Results of the multivariable analysis showed that there was marked variation in prevalence by clinic (P<0·0001) and age (P<0·0001). Overall the majority of infections were in males and the overall prevalence in injectors declined over the study period from 36·9% to 28·7%. The annual incidence in these injectors was estimated as being 3·01% (95% CI 1·25–6·73). Over the study period HCV incidence decreased by 1·2% per year. Genotyping of the incident infections identified the most common genotype as type 1 with type 3 being more frequently seen after 1998. Of the prevalent infections, genotype 1 was the most common. The study has confirmed a higher prevalence of anti-HCV in IDUs in the London area compared to those outside London. How representative of the current injecting drug user population are IDUs attending GUM clinics is unclear. Even so, such studies allow prevalence and incidence to be estimated in individuals who have ever injected drugs and inform ongoing public health surveillance.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Prevalence and incidence of hepatitis C in injecting drug users attending genitourinary medicine clinics
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Prevalence and incidence of hepatitis C in injecting drug users attending genitourinary medicine clinics
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Prevalence and incidence of hepatitis C in injecting drug users attending genitourinary medicine clinics
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr M. A. Balogun, Health Protection Agency, Centre for Infections, Immunisation Department, 61 Colindale Avenue, London NW9 5EQ, UK. (Email: koye.balogun@hpa.org.uk)

References

Hide All
1. Gungabissoon, U, Balogun, MA, Ramsay, ME. Hepatitis C virus: laboratory surveillance in England and Wales, 1992–2004. Epidemiolgy and Infecion 2007; 135: 541548.
2. HPA. Hepatitis C in England: an update 2007, London: Health Protection Agency Centre for Infections, December 2007.
3. Lamden, KH, et al. Hepatitis B and hepatitis C virus infections: risk factors among drug users in Northwest England. Journal of Infection 1998; 37: 260269.
4. Hope, VD, et al. Prevalence of hepatitis C among injection drug users in England and Wales: Is harm reduction working? American Journal of Public Health 2001; 91: 3842.
5. Roy, KM, et al. Hepatitis C virus infection among injecting drug users in Scotland: a review of prevalence and incidence data and the methods used to generate them. Epidemiology and Infection 2007; 135: 433442.
6. Roy, KM, et al. A method to detect the incidence of hepatitis C infection among injecting drug users in Glasgow 1993–98. Journal of Infection 2001; 43: 200205.
7. Judd, A, et al. Incidence of hepatitis C virus and HIV among new injecting drug users in London: prospective cohort study. British Medical Journal 2005; 330: 2425.
8. Anon. Recommendations for prevention and control of hepatitis C virus (HCV) infection and HCV related chronic disease. Morbidity and Mortality Weekly Report 1998; 47: 139.
9. Busch, MP, et al. Declining value of alanine aminotransferase in screening of blood donors to prevent posttransfusion hepatitis B and C virus infection. The Retrovirus Epidemiology Donor Study. Transfusion 1995; 35: 903910.
10. Interorganizational Task Force. Report of the Interorganizational Task Force on nucleic acid amplification testing of blood donors. Transfusion 2000; 40: 143159.
11. Flanagan, P, Barbara, J. PCR testing of plasma pools: from concept to reality. Transfusion Medicine Reviews 1999; 13: 164176.
12. Mortimer, P. Ready, steady, go for HCV antigen testing? Communicable Disease and Public Health 2000; 3: 154155.
13. Busch, MP. Insights into the epidemiology, natural history and pathogenesis of hepatitis C virus infection from studies of infected donors and blood product recipient. Transfusion Clinique et Biologique 2001; 8: 200206.
14. Page-Shafer, K, et al. Testing strategy to identify cases of acute hepatitis C virus (HCV) and to project HCV incidence rates. Journal of Clinical Microbiology 2008; 46: 499506.
15. Nicoll, A, et al. The public health applications of unlinked anonymous seroprevalence monitoring for HIV in the United Kingdom. International Journal of Epidemiology 2000; 29: 110.
16. Balogun, MA, et al. A national survey of genitourinary medicine clinic attenders provides little evidence of sexual transmission of hepatitis C virus infection. Sexually Transmitted Infections 2003; 79: 301306.
17. Harris, KA, et al. The most prevalent hepatitis C virus genotypes in England and Wales are 3a and 1a. Journal of Medical Virology 1999; 58: 127131.
18. Li, HJ, et al. Polymerase chain reaction assay for hepatitis C RNA using a single tube for reverse transcription and serial rounds of amplification with nested primer pairs. Journal of Medical Virology 1992; 38: 220225.
19. Poljanpelto, P, et al. Hepatitis C genotypes in Finland determined by RFLP. Clinical Diagnostic Virology 1996; 7: 716.
20. Satten, GA, et al. Validating marker-based incidence estimates in repeatedly screened populations. Biometrics 1999; 55: 12241227.
21. Janssen, RS, et al. New testing strategy to detect early HIV-1 infection for use in incidence estimates and for clinical and prevention purposes. Journal of the American Medical Association 1998; 250: 4248.
22. Armitage, P, Colton, T(eds). Encyclopaedia of Biostatistics, vol. 6. Chichester: John Wiley, 1998, p. 4574.
23. Chadborn, TR, et al. Trends in, and determinants of HIV, testing aty genitourinary medicine clinics and general practice in England, 1990–2000. Sexually Transmitted Infections 2004; 80: 145150.
24. Beld, M, et al. Different hepatitis C virus (HCV) RNA load profiles following seroconversion among injecting drug users without correlation with HCV genotype and serum alanine aminotransferase levels. Journal of Clinical Microbiology 1998; 36: 872877.
25. Sutton, AJ, et al. Modelling the force of infection for hepatitis B and hepatitis C in injecting drug users in England and Wales. BMC Infectious Diseases 2006; 6: 93.
26. Aarons, E, et al. Failure to diagnose recent hepatitis C virus infections in London injecting drug users. Journal of Medical Virology 2004; 73: 548553.
27. Micallef, JM, Kaldor, JM, Dore, GJ. Spontaneous viral clearance following acute hepatitis C infection: a systematic review of longitudinal studies. Journal of Viral Hepatitis 2006; 13: 3441.
28. National Centre for Social Research. National Survey of Sexual Attitudes and Lifestyles II, 2000–2001. (NATSAL II; NATSAL 2000) Colchester, Essex: UK Data Archive, 2005.
29. Beld, M, et al. Low levels of hepatitis C virus RNA in serum, plasma and peripheral blood mononuclear cells of injecting drug users during long antibody-undetectable periods before seroconversion. Blood 1999; 94: 11831191.
30. Broers, B, et al. Prevalence and incidence rate of HIV, hepatitis B and C among drug users on methadone maintenance treatment in Geneva between 1988 and 1995. AIDS 1998; 12: 20592066.
31. Chamot, L, et al. Incidence of hepatitis C, hepatitis B and HIV 1 infections among drug users in a methadone-maintenance programme. AIDS 1992; 6: 430431.
32. Mansson, AS, et al. Continued transmission of hepatitis B and C viruses, but no transmission of human immunodeficiency virus among intravenous drug users participating in a syringe needle/exchange program. Scandinavian Journal of Infectious Diseases 2000; 32: 253258.
33. Lucidarme, D, et al. Incidence and risk factors of HCV and HIV infections in a cohort of intravenous drug users in the North and East of France. Epidemiology and Infection 2004; 132: 699708.
34. Villano, SA, et al. Incidence and risk factors for hepatitis among injection drug users in Baltimore, Maryland. Journal of Clinical Microbiology 1997; 35: 32743277.
35. Garfein, RS, et al. Prevalence and incidence of hepatitis C virus infection among young adult injection drug users. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology 1998 18 (Suppl.): S11S19.
36. Hahn, JA, et al. Hepatitis C virus infection and needle exchange use among young injection drug users in San Francisco. Hepatology 2001; 34: 180187.
37. Patrick, DM, et al. Incidence of hepatitis C virus infection among injection drug users during an outbreak of HIV infection. Canadian Medical Association Journal 2001; 165: 889895.
38. Roy, E, et al. High hepatitis C virus prevalence and incidence among Canadian intravenous drug users. International Journal of STD and AIDS 2007; 18: 2327.
39. Maher, L, et al. Incidence and risk factors for hepatitis C seroconversion in injecting drug users in Australia. Addiction 2006; 101: 14991508.
40. Maher, L, et al. High hepatitis C incidence in new injecting drug users: a policy failure? Australian and New Zealand Journal of Public Health 2007; 31: 3035.
41. Health Protection Agency, Health Protection Scotland, National Public Health Service for Wales, CDSC Northern Ireland, CRDHB and the UASSG. Shooting up: infections among injecting drug users in the United Kingdom 2006. London: Health Protection Agency, October 2007.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed