Skip to main content Accessibility help
×
Home

Presence of Salmonella spp., Yersinia enterocolitica, Yersinia pseudotuberculosis and Escherichia coli O157:H7 in wild boars

  • A. SANNÖ (a1) (a2), A. ASPÁN (a3), G. HESTVIK (a2) and M. JACOBSON (a1)

Summary

The European wild boar populations are growing and spreading to new areas, which might constitute a threat to public health, since wild boar can harbour pathogens with the potential to cause serious illness in humans. Tonsils, ileocaecal lymph nodes and faecal samples were collected from 88 Swedish wild boars and analysed for the presence of the zoonotic pathogens Salmonella spp., Yersinia enterocolitica, Y. pseudotuberculosis and enterohaemorrhagic Escherichia coli O157:H7 (EHEC). A combination of cultivation and polymerase chain reaction (PCR) analysis was used and overall, 20% of sampled individuals tested positive for Y. enterocolitica, 20% for Y. pseudotuberculosis and 10% for Salmonella spp. A total of 41% of sampled individuals tested positive for one or more of these three pathogens. No EHEC were detected. Samples PCR-positive for Salmonella spp. were cultivated further and six isolates were obtained, belonging to Salmonella enterica subspecies enterica and subspecies diarizone. The pathogens were most commonly detected in tonsil samples.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Presence of Salmonella spp., Yersinia enterocolitica, Yersinia pseudotuberculosis and Escherichia coli O157:H7 in wild boars
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Presence of Salmonella spp., Yersinia enterocolitica, Yersinia pseudotuberculosis and Escherichia coli O157:H7 in wild boars
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Presence of Salmonella spp., Yersinia enterocolitica, Yersinia pseudotuberculosis and Escherichia coli O157:H7 in wild boars
      Available formats
      ×

Copyright

Corresponding author

* Author for correspondence: Dr A. Sannö, Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7054, SE 750 07 Uppsala, Sweden. (Email: axel.sanno@slu.se)

References

Hide All
1. Al, Dahouk S, et al. Seroprevalence of brucellosis, tularemia, and yersiniosis in wild boars (Sus scrofa) from north-eastern Germany. Journal of Veterinary Medicine, Series B 2005; 52: 444455.
2. Fredriksson-Ahomaa, M, et al. Prevalence of pathogenic Yersinia enterocolitica and Yersinia pseudotuberculosis in wild boars in Switzerland. International Journal of Food Microbiology 2009; 135: 199202.
3. Wacheck, S, et al. Wild Boars as an important reservoir for foodborne pathogens. Foodborne Pathogens and Disease 2010; 7: 307312.
4. Hejlicek, K, Literak, I, Nezval, J. Toxoplasmosis in wild mammals from the Czech Republic. Journal of Wildlife Diseases 1997; 33: 480485.
5. Schielke, A, et al. Detection of hepatitis E virus in wild boars of rural and urban regions in Germany and whole genome characterization of an endemic strain. Virology Journal 2009; 6: 58.
6. Sánchez, S, et al. Detection and characterisation of O157:H7 and non-O157 Shiga toxin-producing Escherichia coli in wild boars. Veterinary Microbiology 2010; 143: 420423.
7. EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2010. EFSA Journal 2012; 10: 2597.
8. NVI. Surveillance of infectious diseases in animals and humans in Sweden 2011. SVA report series. National Veterinary Institute (SVA), 2012.
9. Methner, U, Heller, M, Bocklisch, H. Salmonella enterica subspecies enterica serovar Choleraesuis in a wild boar population in Germany. European Journal of Wildlife Research 2010; 56: 493502.
10. Fredriksson-Ahomaa, M, Lindström, M, Korkeala, H. In: Jujena, V, Sofos, NJ eds. Pathogens and Toxins in Food: Challenges and Interventions. Washington, DC: ASM Press, 2010.
11. Aspan, A, Eriksson, E. Verotoxigenic Escherichia coli O157:H7 from Swedish cattle; isolates from prevalence studies versus strains linked to human infections – a retrospective study. BMC Veterinary Research 2010; 6: 7.
12. Jay, MT, et al. Escherichia coli O157:H7 in feral swine near spinach fields and cattle, central California coast. Emerging Infectious Diseases 2007; 13: 19081911.
13. Wahlström, H, et al. Survey of Campylobacter species, VTEC O157 and Salmonella species in Swedish wildlife. Veterinary Record 2003; 153: 7480.
14. Thurfjell, H, et al. Habitat use and spatial patterns of wild boar Sus scrofa (L.): agricultural fields and edges. European Journal of Wildlife Research 2009; 55: 517523.
15. Magnusson, M. Population and management models for the Swedish wild boar (Sus scrofa) (Master's thesis). Department of Ecology, 2010, Swedish University of Agricultural Sciences, The Faculty of Natural Resources and Agricultural Sciences, Department of Ecology: Uppsala/Grimsö, pp. 122.
16. ISO, I.S. ISO 10990–5: 1999 Animal (mammal) traps – Part 5: Methods for testing restraining traps, 1999, International Organization for Standardization (ISO) Geneva, p. 20.
17. Jourdan, AD, Johnson, SC, Wesley, IV. Development of a fluorogenic 5′ nuclease PCR assay for detection of the ail gene of pathogenic Yersinia enterocolitica . Applied and Environmental Microbiology 2000; 66: 37503755.
18. Lambertz, ST, et al. Real-time PCR method for detection of pathogenic Yersinia enterocolitica in food. Applied and Environmental Microbiology 2008; 74: 60606067.
19. Thisted, Lambertz S, et al. A combined culture and PCR method for detection of pathogenic Yersinia enterocolitica in food. International Journal of Food Microbiology 2000; 57: 6373.
20. Lambertz, ST, Nilsson, C, Hallanvuo, S. TaqMan-based real-time PCR method for detection of Yersinia pseudotuberculosis in food. Applied and Environmental Microbiology 2008; 74: 64656469.
21. Hoorfar, J, Ahrens, P, Rådström, P. Automated 5′ nuclease PCR assay for identification of Salmonella enterica . Journal of Clinical Microbiology 2000; 38: 34293435.
22. Perelle, S, et al. Detection by 5′-nuclease PCR of Shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113, O145 and O157:H7, associated with the world's most frequent clinical cases. Molecular and Cellular Probes 2004; 18: 185192.
23. ISO, I.S. ISO 6579: 2002 Microbiology of food and animal feeding stuffs – horizontal method for the detection of Salmonella spp., 2002, International Organization for Standardization (ISO), Geneva, p. 27.
24. Lambertz, ST. Risk profile – Yersinia enterocolitica, 2007. National Food Administration, p. 41.
25. Rimhanen-Finne, R, et al. Yersinia pseudotuberculosis causing a large outbreak associated with carrots in Finland, 2006. Epidemiology & Infection 2009; 137 (Special Issue 3): 342347.
26. Kangas, S, et al. Yersinia pseudotuberculosis O:1 traced to raw carrots. Emerging Infectious Diseases 2008; 14: 19591961.
27. Niskanen, T, et al. virF-Positive Yersinia pseudotuberculosis and Yersinia enterocolitica Found in Migratory Birds in Sweden. Applied and Environmental Microbiology 2003; 69: 46704675.
28. Backhans, A, Fellström, C, Lambertz, ST. Occurrence of pathogenic Yersinia enterocolitica and Yersinia pseudotuberculosis in small wild rodents. Epidemiology & Infection 2011; 139: 12301238.
29. Fernández-Llario, P, Mateos-Quesada, P. Population structure of the wild boar (Sus scrofa) in two Mediterranean habitats in the western Iberian Peninsula. Folia Zoologica 2003; 52: 143148.

Keywords

Presence of Salmonella spp., Yersinia enterocolitica, Yersinia pseudotuberculosis and Escherichia coli O157:H7 in wild boars

  • A. SANNÖ (a1) (a2), A. ASPÁN (a3), G. HESTVIK (a2) and M. JACOBSON (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed