Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T08:52:27.328Z Has data issue: false hasContentIssue false

Numerical analysis of SDS–PAGE protein patterns of Serratia marcescens: a comparison with other typing methods

Published online by Cambridge University Press:  15 May 2009

B. Holmes
Affiliation:
National Collection of Type Cultures, Central Public Health Laboratory, London NW9 5HT, England
M. Costas
Affiliation:
National Collection of Type Cultures, Central Public Health Laboratory, London NW9 5HT, England
L. L. Sloss
Affiliation:
National Collection of Type Cultures, Central Public Health Laboratory, London NW9 5HT, England
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Twenty-five cultures comprising 18 clinical isolates of Serratia marcescens from two hospitals, the type strain of S. marcescens, two reference strains of S. marinorubra, the type or a reference strain of three other Serratia species and a reference strain of undetermined species, were characterized by one-dimensional sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) of whole-cell proteins. The protein patterns were highly reproducible and were used as the basis of a numerical analysis which divided the clinical isolates into eight protein types. Comparison with O-serotyping indicated that the level of discrimination by SDS–PAGE was similar. As with O-serotyping, a secondary scheme, such as phage typing, is necessary to differentiate strains of the same protein type. We conclude that high-resolution SDS–PAGE of proteins provides an effective adjunct to other methods for typing isolates of S. marcescens.

Type
Special Article
Copyright
Copyright © Cambridge University Press 1990

References

REFERENCES

1.Holmes, B, Gross, RJ. Coliform bacteria; various other members of the Enterobacteriaceae. In: Parker, MT. ed. Topley and Wilson's principles of bacteriology, virology and immunity, 7th ed. vol. 2. Maidenhead, England: Edward Arnold, 1983: 285309.Google Scholar
2.Pitt, TL, Erdman, YJ. Serological typing of Serratia marcescens. In: Bergan, T, ed. Methods in microbiology, vol. 15. London: Academic Press, 1984: 173211.Google Scholar
3.Traub, WH. Serotyping of Serratia marcescens: identification of a new O-antigen (O24). Zbl Bakt Hyg A 1985; 259: 485–8.Google ScholarPubMed
4.Gaston, MA, Duff, PS, Pitt, TL. Lipopolysaccharide heterogeneity in strains of Serratia marcescens agglutinated by O14 antiserum. Curr Microbiol 1988; 17: 2731.CrossRefGoogle Scholar
5.Le Minor, S, Pigache, F. Étude antigénique de souches de Serratia marcescens isolées en France. II. Caractérisation des antigènes O et individualisation de 5 nouveaux facteurs. fréquence des sérotypes et désignation des nouveaux facteurs H. Ann Microbiol (Inst. Pasteur) 1978; 129B: 407–23.Google Scholar
6.Ewing, WH, Davis, BR, Reavis, RW. Studies on the Serratia group. Atlanta, Georgia: U.S. Department of Health, Education and Welfare, 1959.Google Scholar
7.Le Minor, S, Sauvageot-Pigache, F. Nouveaux facteurs antigéniques H (H21–H25) et O (O21) de Serratia marcescens: subdivision des facteurs O5, O10, O16. Ann Microbiol (Inst. Pasteur) 1981; 132A: 239–52.Google Scholar
8.Le Minor, S, Pigache, F. Étude antigénique de souches de Serratia marcescens isolées en France. I. Antigènes H: individualisation de six nouveaux facteurs H. Ann Microbiol (Inst. Pasteur) 1977; 128B: 207–14.Google Scholar
9.Wilfert, JN, Barrett, FF, Ewing, WH, Finland, M, Kass, EH. Serratia marcescens: biochemical, serological, and epidemiological characteristics and antibiotic susceptibility of strains isolated at Boston City Hospital. Appl Microbiol 1970; 19: 345–52.CrossRefGoogle ScholarPubMed
10.Pitt, TL, Erdman, YJ, Bucher, C. The epidemiological type identification of Serratia marcescens from outbreaks of infection in hospitals. J Hyg 1980; 84: 269–83.CrossRefGoogle ScholarPubMed
11.Grimont, PAD, Grimont, F. Biotyping of Serratia marcescens and its use in epidemiological studies. J Clin Microbiol 1978; 8: 7383.CrossRefGoogle ScholarPubMed
12.Sifuentes-Osornio, J, Gröschel, DHM. Modification of Grimont biotyping system for epidemiologic studies with nosocomial Serratia marcescens isolates. J Clin Microbiol 1987; 25: 567–8.CrossRefGoogle ScholarPubMed
13.Arzese, A, Botta, GA, Gesu, GP, Schito, G. Evaluation of a computer-assisted method of analysing SDS-PAGE protein profiles in tracing a hospital outbreak of Serratia marcescens. J Infect 1988; 17: 3542.CrossRefGoogle ScholarPubMed
14.Jackman, PJH. Bacterial taxonomy based on electrophoretic whole-cell protein patterns. In: Goodfellow, M, Minnikin, DE, eds. Chemical methods in bacterial svstematics (Societv for Applied Bacteriology Technical Series; No. 20). London: Academic Press, 1985: 115–29.Google Scholar
15.Kersters, K. Numerical methods in the classification of bacteria by protein electrophoresis. In: Goodfellow, M, Jones, D, Priest, FG, eds. Computer assisted bacterial svstematics. London: Academic Press, 1985: 337–68.CrossRefGoogle Scholar
16.Alexander, M, Rahman, M, Taylor, M, Noble, WC. A study of the value of electrophoretic and other techniques for typing Acinetobacter calcoaceticus. J Hosp Infect 1988; 12: 273–87.CrossRefGoogle ScholarPubMed
17.Owen, RJ, Costas, M, Morgan, DD, On, SLW, Hill, LR, Pearson, AD, Morgan, DR. Strain variation in Campylobacter pylori detected by numerical analysis of one-dimensional electrophoretic protein patterns. Antonie Van Leeuwenhoek 1989; 55: 253–67.CrossRefGoogle ScholarPubMed
18.Tabaqchali, S, O'Farrell, S, Holland, D, Silman, R. Method for the typing of Clostridium difficile based on PAGE of [35S]methionine-labeled proteins. J Clin Microbiol 1986; 23:197–8.CrossRefGoogle Scholar
19.Mulligan, ME, Peterson, LR, Kwok, RYY, Clabots, CR, Gerding, DN. Immunoblots and plasmid fingerprints compared with serotyping and polyacrylamide gel electrophoresis for typing Clostridium difficile. J Clin Microbiol 1988; 26: 41–6.CrossRefGoogle ScholarPubMed
20.Costas, M, Sloss, LL, Owen, RJ, Gaston, MA. Evaluation of numerical analysis of SDS–PAGE of protein patterns for typing Enterobacter cloacae. Epidemiol Infect 1989; 103: 265–74.CrossRefGoogle ScholarPubMed
21.Holmes, B, Costas, M, Sloss, LL. Numerical analysis of electrophoretic protein patterns of Providencia alcalifaciens strains from human faeces and veterinary specimens. J Appl Bacteriol 1988; 64: 2735.CrossRefGoogle ScholarPubMed
22.Costas, M, Cookson, BD, Talsania, HG, Owen, RJ. Numerical analysis of electrophoretic protein patterns of methicillin-resistant strains of Staphylococcus aureus. J Clin Microbiol 1989; 27: 2574–81.CrossRefGoogle ScholarPubMed
23.Stephenson, JR, Crook, SJ, Tabaqchali, S. New method for typing Staphylococcus aureus resistant to methicillin based on sulphur-35 methionine labelled proteins: its application in an outbreak. Br Med J 1986; 293: 581–3.CrossRefGoogle Scholar
24.Gaston, MA, Pitt, TL. O-antigen specificities of the serotvpe strains of Serratia marcescens. J Clin Microbiol 1989; 27: 2697–701.CrossRefGoogle ScholarPubMed
25.Costas, M, Holmes, B, Sloss, LL. Numerical analysis of electrophoretic protein patterns of Providencia rustigianii strains from human diarrhoea and other sources. J Appl Bacteriol 1987; 63: 319–28.CrossRefGoogle ScholarPubMed
26.Costas, M, Holmes, B, Wood, AC, On, SLAV. Numerical analysis of electrophoretic protein patterns of Providencia rettgeri strains from human faeces, urine and other specimens. J Appl Baoteriol 1989; 67: 441–52.CrossRefGoogle ScholarPubMed
27.Jackman, PJH, Feltham, RKA, Sneath, PHA. A program in BASIC for numerical taxonomy of microorganisms based on electrophoretic protein patterns. Microbios Lett 1983; 23: 8793.Google Scholar
28.Sneath, PHA, Johnson, R. The influence on numerical taxonomic similarities of errors in microbiological tests. J Gen Microbiol 1972; 72: 377–92.CrossRefGoogle ScholarPubMed