Skip to main content Accessibility help
×
Home

Nasopharyngeal vs. adenoid cultures in children undergoing adenoidectomy: prevalence of bacterial pathogens, their interactions and risk factors

  • I. KORONA-GLOWNIAK (a1), A. NIEDZIELSKI (a2) (a3), U. KOSIKOWSKA (a1), A. GRZEGORCZYK (a1) and A. MALM (a1)...

Summary

Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and Staphylococcus aureus colonization of the adenoids and nasopharynx in 103 preschool children who underwent adenoidectomy for recurrent upper respiratory tract infections was examined. Bacterial interactions and risk factors for bacterial colonization of the nasopharynx and adenoids, separately, were analysed statistically. The prevalence of simultaneous isolation from both anatomical sites was 45·6% for S. pneumoniae, 29·1% for H. influenzae, 15·5% for M. catarrhalis and 18·4% for S. aureus. Three pathogens were significantly more frequent together from adenoid samples; nasopharyngeal swabs more often yielded a single organism, but without statistical significance. M. catarrhalis and S. aureus significantly more frequently co-existed with S. pneumoniae and H. influenzae than with each other and a positive association of S. pneumoniae and H. influenzae in adenoid samples was evident. Several differences between risk factors for nasopharyngeal and adenoid colonization by the individual pathogens were observed. We conclude that the adenoids and nasopharynx appear to differ substantially in colonization by pathogenic microbes but occurrence of H. influenzae and S. pneumoniae in the nasopharynx could be predictive of upper respiratory tract infections.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Nasopharyngeal vs. adenoid cultures in children undergoing adenoidectomy: prevalence of bacterial pathogens, their interactions and risk factors
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Nasopharyngeal vs. adenoid cultures in children undergoing adenoidectomy: prevalence of bacterial pathogens, their interactions and risk factors
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Nasopharyngeal vs. adenoid cultures in children undergoing adenoidectomy: prevalence of bacterial pathogens, their interactions and risk factors
      Available formats
      ×

Copyright

Corresponding author

* Author for correspondence: Mrs I. Korona-Glowniak, Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland. (Email: iza.glowniak@umlub.pl)

References

Hide All
1. Wertheim, HF, et al. The role of nasal carriage in Stapylococcus aureus infections. Lancet Infection Diseases 2005; 5: 751762.
2. Bernhard, S, Spaniol, V, Aebi, C. Molecular pathogenesis of infections caused by Moraxella catarrhalis in children. Swiss Medical Weekly 2012; 142: w13694.
3. Bogaert, D, et al. Colonization by Streptococcus pneumoniae and Staphylococcus aureus in healthy children. Lancet 2004; 363: 18711872.
4. Principi, N, et al. Risk factors for carriage of respiratory pathogens in the nasopharynx of healthy children. Pediatric Infectious Disease Journal 1999; 18: 517523.
5. Garcia-Rodriguez, JA, Martinez, MJF. Dynamics of nasopharyngeal colonization by potential respiratory pathogens. Journal of Antimicrobial Chemotherapy 2002; 50 (Suppl. S2): S59.
6. Brook, I, Shah, K, Jackson, W. Microbiology of healthy and diseased adenoids. Laryngoscope 2000; 110: 994999.
7. Jacoby, P, et al. Modeling the co-occurence of Streptococcus pneumoniae with other bacterial and viral pathogens in the upper respiratory tract. Vaccine 2007; 25: 24582464.
8. Murphy, TF, Bakaletz, LO, Smeesters, PR. Microbial interaction in the respiratory tract. Pediatric Infectious Disease Journal 2009; 28: S121S126.
9. Karlidag, T, et al. Resistant bacteria in the adenoid tissues of children with otitis media with effusion. International Journal of Pediatric Otorhinolaryngology 2002; 64: 3540.
10. Gunnarsson, RK, Holm, SE, Soderstrom, M. The prevalence of potential pathogenic bacteria in nasopharyngeal samples from individuals with a respiratory tract infection and sore throat – implications for the diagnosis of pharyngotonsillitis. Family Practice 2001; 18: 266271.
11. Forsgren, J, et al. Persistence of nontypeable Haemophilus influenzae in adenoid macrophages: a putative colonization mechanism. Acta Otolaryngologica 1996; 116: 766773.
12. Heiniger, N, et al. A reservoir of Moraxella catarrhalis in human pharyngeal lymphoid tissue. Journal of Infectious Diseases 2007; 196: 10801087.
13. Clement, S, et al. Evidence of an intracellular reservoir in the nasal mucosa of patients with recurrent Staphylococcus aureus rhinosinusitis. Journal of Infectious Diseases 2005; 192: 10231028.
14. Brook, I, Shah, K. `Bacteriology of adenoids and tonsils in children with recurrent adenotonsillitis. Annals of Otology, Rhinology, and Laryngology 2001; 110: 844848.
15. Gaffney, RJ, et al. Differences in tonsillar core bacteriology in adults and children: a prospective study of 262 patients. Respiratory Medicine 1991; 85: 383388.
16. Lindroos, R. Bacteriology of the tonsil core in recurrent tonsillitis and tonsillar hyperplasia – a short review. Acta Otolaryngologica 2000 (Suppl.); 543: 206208.
17. Gaffney, RJ, Cafferkey, MT. Bacteriology of normal and diseased tonsils assessed by fine-needle aspiration: Haemophilus influenzae and the pathogenesis of recurrent acute tonsillitis. Clinical Otolaryngology 1998; 23: 181185.
18. Soderstrom, M, et al. Erythromycin and phenoxymethylpenicillin (penicillin V) in the treatment of respiratory tract infections as related to microbiological findings and serum C-reactive protein. Scandinavian Journal of Infectious Diseases 1991; 23: 347354.
19. Suzuki, M, Watanabe, T, Mogi, G. Clinical, bacteriological, and histological study of adenoids in children. American Journal of Otolaryngology 1999; 29: 8590.
20. Nistico, L, et al. Adenoid reservoir for pathogenic biofilm bacteria. Journal of Cinical Microbiology 2011; 49: 14111420.
21. Syrjänen, RK, et al. Nasopharyngeal carriage of Streptococcus pneumoniae in Finnish children younger than 2 years old. Journal of Infectious Diseases 2001; 184: 451459.
22. Greenberg, D, et al. Relative importance of nasopharyngeal versus oropharyngeal sampling for isolation of Streptococcus pneumoniae and Haemophilus influenzae from healthy and sick individuals varies with age. Journal of Clinical Microbiology 2004; 42: 46044609.
23. Meier, PS, et al. Mucosal immune response to specific outer membrane proteins of Moraxella catarrhalis in young children. Pediatric Infectious Disease Journal 2003; 22: 256262.
24. Zemlickova, H, et al. Characteristics of Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and Staphylococcus aureus isolated from the nasopharynx of healthy children attending day-care centres in the Czech Republic. Epidemiology and Infection 2006; 134: 11791187.
25. Ejlertsen, T, et al. Branhamella catarrhalis in children and adults. A study of prevalence, time of colonization, and association with upper and lower respiratory tract infections. Journal of Infection 1994; 29: 2331.
26. Suzuki, M, Watanabe, T, Mogi, G. Clinical, bacteriological and histological study of adenoids in children. American Journal of Otolaryngology 1999; 20: 8590.
27. McCay, JE. Resistant bacteria in the adenoids: a preliminary report. Archive of Otolaryngology – Head Neck Surgery 2000; 126: 625629.
28. Shin, KS, et al. The role of adenoids in pediatric rhinosinusitis. International Journal of Pediatric Otorhinolaryngology 2008; 72: 16431650.
29. Regev-Yochay, G, et al. Association between carriage of Streptococcus pneumoniae and Staphylococcus aureus in children. Journal of the American Medical Association 2004; 292: 716720.
30. Pettigrew, MM, et al. Microbial interactions during upper respiratory tract infections. Emerging Infectious Diseases 2008; 14: 15841591.
31. Xu, Q, et al. Nasopharyngeal bacterial interactions in children. Emerging Infectious Diseases 2012; 18: 17381745.
32. Marzouk, H, et al. The utility of nasopharyngeal culture in the management of chronic adenoiditis. International Journal of Pediatric Otorhinolaryngology 2012; 76: 14131415.
33. Greenberg, D, et al. The contribution of smoking and exposure to tobacco smoke to Streptococcus pneumoniae and Haemophilus influenzae carriage in children and their mothers. Clinical Infectious Diseases 2006; 42: 897903.
34. Bakhshaee, M, et al. Passive smoking and nasopharyngeal colonization by Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in daycare children. European Archives of Otorhinolaryngology 2012; 269: 11271132.
35. Kosikowska, U, Korona-Glowniak, I, Malm, A. Passive smoking as a risk factor for upper respiratory tract colonization by Haemophilus influenzae in healthy pre-school children. Polish Journal of Environmental Studies 2011; 20: 15411545.
36. Boken, DJ, et al. Colonization with penicillin-nonsusceptible Streptococcus pneumoniae in urban and rural child-care centers. Pediatric Infectious Disease Journal 1996; 15: 667672.
37. Mackenzie, GA, et al. Epidemiology of nasopharyngeal carriage of respiratory bacterial pathogens in children and adults: cross-sectional surveys in a population with high rates of pneumococcal disease. BMC Infectious Diseases 2010; 10: 304.
38. Jourdain, S, et al. Differences in nasopharyngeal bacterial carriage in preschool children from different socio-economic origins. Clinical Microbiology and Infection 2011; 17: 907914.
39. van den Bergh, MR, et al. Associations between pathogens in the upper respiratory tract of young children: interplay between viruses and bacteria. PLoS One 2012; 7: e47711.
40. Varon, E, et al. Impact of antimicrobial therapy on nasopharyngeal carriage of Streptococcus pneumoniae, Haemophilus influenzae, and Branhamella catarrhalis in children with respiratory tract infections. Clinical Infectious Diseases 2000; 31: 477481.

Keywords

Nasopharyngeal vs. adenoid cultures in children undergoing adenoidectomy: prevalence of bacterial pathogens, their interactions and risk factors

  • I. KORONA-GLOWNIAK (a1), A. NIEDZIELSKI (a2) (a3), U. KOSIKOWSKA (a1), A. GRZEGORCZYK (a1) and A. MALM (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed