Skip to main content Accessibility help
×
Home

Multiple risk factors associated with a large statewide increase in cryptosporidiosis

  • A. L. VALDERRAMA (a1) (a2), M. C. HLAVSA (a3), A. CRONQUIST (a4), S. COSGROVE (a4), S. P. JOHNSTON (a3), J. M. ROBERTS (a3), M. L. STOCK (a5), L. XIAO (a3), K. XAVIER (a4) and M. J. BEACH (a3)...

Summary

Cryptosporidium species have emerged as a major cause of outbreaks of diarrhoea and have been associated with consumption of contaminated recreational and drinking water and food as well as contact with infected attendees of child-care programmes. In August 2007, the Colorado Department of Public Health and Environment detected an increase in cryptosporidiosis cases over baseline values. We conducted a case-control study to assess risk factors for infection and collected stool specimens from ill persons for microscopy and molecular analysis. Laboratory-confirmed cases (n=47) were more likely to have swallowed untreated water from a lake, river, or stream [adjusted matched odds ratio (aOR) 8·0, 95% confidence interval (CI) 1·3–48·1], have had exposure to recreational water (aOR 4·6, 95% CI 1·4–14·6), or have had contact with a child in a child-care programme or in diapers (aOR 3·8, 95% CI 1·5–9·6). Although exposure to recreational water is commonly implicated in summertime cryptosporidiosis outbreaks, this study demonstrates that investigations of increased incidence of cases in summer should also examine other potential risk factors. This study emphasizes the need for public health education efforts that address the multiple transmission routes for Cryptosporidium and appropriate prevention measures to avoid future transmission.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Multiple risk factors associated with a large statewide increase in cryptosporidiosis
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Multiple risk factors associated with a large statewide increase in cryptosporidiosis
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Multiple risk factors associated with a large statewide increase in cryptosporidiosis
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: A. L. Valderrama, Ph.D., R.N., National Center for Chronic Disease Prevention and Health Promotion, 4770 Buford Hwy, NE, Atlanta, GA 30341, MS K-47. (Email: AValderrama@cdc.gov)

References

Hide All
1. Chen, XM, et al. Cryptosporidiosis. New England Journal of Medicine 2002; 346: 17231731.
2. Nichols, G. Epidemiology. In: Fayer, R, Xiao, L, eds. Cryptosporidium and Cryptosporidiosis, 2nd edn. Boca Raton, FL: CRC Press, 2008, pp. 79–118.
3. Casemore, DP. Epidemiological aspects of human cryptosporidiosis. Epidemiology and Infection 1990; 104: 128.
4. Yoder, JS, Beach, MJ. Cryptosporidiosis surveillance – United States, 2003–2005. Morbidity and Mortality Weeekly Report 2007; 56: 110.
5. Xiao, L, Ryan, UM. Molecular epidemiology. In: Fayer, R, Xiao, L, eds. Cryptosporidium and Cryptosporidiosis, 2nd edn. Boca Raton, FL: CRC Press, 2008, pp. 119172.
6. King, BJ, Monis, PT. Critical processes affecting Cryptosporidium oocyst survival in the environment. Parasitology 2007; 134: 309323.
7. Korich, DG, et al. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability. Applied and Environmental Microbiology 1990; 56: 14231428.
8. Yoder, J, et al. Surveillance for waterborne disease and outbreaks associated with drinking water and water not intended for drinking – United States, 2005–2006. Morbidity and Mortality Weeekly Report. Surveillance Summaries 2008; 57: 3962.
9. Yoder, JS, et al. Surveillance for waterborne disease and outbreaks associated with recreational water use and other aquatic facility-associated health events – United States, 2005–2006. Morbidity and Mortality Weeekly Report. Surveillance Summaries 2008; 57: 138.
10. Beach, MJ. Waterborne: recreational water. In: Fayer, R, Xiao, L, eds. Cryptosporidium and Cryptosporidiosis, 2nd edn. Boca Raton, FL: CRC Press, 2008, pp. 335370.
11. Blackburn, BG, et al. Cryptosporidiosis associated with ozonated apple cider. Emerging Infectious Diseases 2006; 12: 684686.
12. Millard, PS, et al. An outbreak of cryptosporidiosis from fresh-pressed apple cider. Journal of the American Medical Association 1994; 272: 15921596.
13. Quiroz, ES, et al. An outbreak of cryptosporidiosis linked to a foodhandler. Journal of Infectious Diseases 2000; 181: 695700.
14. Centers for Disease Control and Prevention. Foodborne outbreak of diarrheal illness associated with Cryptosporidium parvum – Minnesota, 1995. Morbidity and Mortality Weeekly Report 1996; 45: 783784.
15. Centers for Disease Control and Prevention. Foodborne outbreak of cryptosporidiosis – Spokane, Washington, 1997. Morbidity and Mortality Weeekly Report 1998; 47: 565567.
16. Turabelidze, G, et al. Communitywide outbreak of cryptosporidiosis in rural Missouri associated with attendance at child care centers. Archives of Pediatrics and Adolescent Medicine 2007; 161: 878883.
17. Alpert, G, et al. Outbreak of cryptosporidiosis in a day-care center. Pediatrics 1986; 77: 152157.
18. Centers for Disease Control and Prevention. Cryptosporidiosis among children attending day-care centers – Georgia, Pennsylvania, Michigan, California, New Mexico. Morbidity and Mortality Weeekly Report 1984; 33: 599601.
19. Tangermann, RH, et al. An outbreak of cryptosporidiosis in a day-care center in Georgia. American Journal of Epidemiology 1991; 133: 471476.
20. Xiao, L, et al. Identification of 5 types of Cryptosporidium parasites in children in Lima, Peru. Journal of Infectious Diseases 2001; 183: 492497.
21. Sulaiman, IM, et al. Unique endemicity of cryptosporidiosis in children in Kuwait. Journal of Clinical Microbiology 2005; 43: 28052809.
22. Jones, TF. Changing challenges of bacterial enteric infection in the United States. Journal of Infectious Diseases 2009; 199: 465466.
23. Cordell, RL, Addiss, DG. Cryptosporidiosis in child care settings: a review of the literature and recommendations for prevention and control. Pediatric Infectious Disease Journal 1994; 13: 310317.
24. Centers for Disease Control and Prevention. Control measures for the child care setting during an outbreak of cryptosporidiosis (http://www.cdc.gov/ncidod/dpd/parasites/cryptosporidiosis/Childcare_outbreak.pdf. 2007). Accessed 27 February 2008.
25. Centers for Disease Control and Prevention. Day care facilities (http://www.cdc.gov/crypto/daycare.html). Accessed 1 February 2009.
26. Centers for Disease Control and Prevention. Preventing cryptosporidiosis: a guide to water filters and bottled water (http://www.cdc.gov/crypto/factsheets/filters.html). Accessed 19 November 2008.
27. Yoder, J, et al. Surveillance for waterborne disease and outbreaks associated with drinking water and water not intended for drinking – United States, 2005–2006. Morbidity and Mortality Weeekly Report. Surveillance Summaries 2008; 57: 3962.
28. Hunter, PR, et al. Sporadic cryptosporidiosis case-control study with genotyping. Emerging Infectious Diseases 2004; 10: 12411249.
29. Robertson, B, et al. Case-control studies of sporadic cryptosporidiosis in Melbourne and Adelaide, Australia. Epidemiology and Infection 2002; 128: 419431.
30. Roy, SL, et al. Risk factors for sporadic cryptosporidiosis among immunocompetent persons in the United States from 1999 to 2001. Journal of Clinical Microbiology 2004; 42: 29442951.
31. Casemore, D. Towards a US national estimate of the risk of endemic waterborne disease – sero-epidemiologic studies. Journal of Water Health 2006; 4 (Suppl. 2): 121163.
32. Leitch, GJ, et al. Dietary fiber and giardiasis: dietary fiber reduces rate of intestinal infection by Giardia lamblia in the gerbil. American Journal of Tropical Medicine and Hygiene 1989; 41: 512520.
33. Fox, LM, Saravolatz, LD. Nitazoxanide: a new thiazolide antiparasitic agent. Clinical Infectious Diseases 2005; 40: 11731180.
34. Anderson, VR, Curran, MP. Nitazoxanide: a review of its use in the treatment of gastrointestinal infections. Drugs 2007; 67: 19471967.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed