Skip to main content Accessibility help
×
Home

Modelling the impact of vaccination on tuberculosis in badgers

  • J. L. HARDSTAFF (a1), M. T. BULLING (a1), G. MARION (a2), M. R. HUTCHINGS (a3) and P. C. L. WHITE (a1)...

Summary

Tuberculosis (TB) in livestock, caused by Mycobacterium bovis, persists in many countries. In the UK and Ireland, efforts to control TB through culling of badgers (Meles meles), the principal wildlife host, have failed and there is significant interest in vaccination of badgers as an alternative or complementary strategy. Using a simulation model, we show that where TB is self-contained within the badger population and there are no external sources of infection, limited-duration vaccination at a high level of efficacy can reduce or even eradicate TB from the badger population. However, where sources of external infection persist, benefits in TB reduction in badgers can only be achieved by ongoing, annual vaccination. Vaccination is likely to be most effective as part of an integrated disease management strategy incorporating a number of different approaches across the entire host community.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modelling the impact of vaccination on tuberculosis in badgers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Modelling the impact of vaccination on tuberculosis in badgers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Modelling the impact of vaccination on tuberculosis in badgers
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: P. C. L. White, Environment Department, University of York, York, YO10 5DD, UK. (Email: piran.white@york.ac.uk)

References

Hide All
1.Carstensen, M, Brien, DJO, Schmitt, SM. Public acceptance as a determinant of management strategies for bovine tuberculosis in free-ranging U.S. wildlife. Veterinary Microbiology 2011; 151: 200204.
2.Tuyttens, FAM, et al. Spatial perturbation caused by a badger (Meles meles) culling operation: implications for the function of territoriality and the control of bovine tuberculosis (Mycobacterium bovis). Journal of Animal Ecology 2000; 69: 815828.
3.Carter, SP, et al. Culling-induced social perturbation in Eurasian badgers Meles meles and the management of TB in cattle: an analysis of a critical problem in applied ecology. Proceedings of the Royal Society of London, Series B 2007; 274: 27692777.
4.Sunde, P, et al. Behavioural responses of GPS-collared female red deer Cervus elaphus to driven hunts. Wildlife Biology 2009; 15: 454460.
5.Scillitani, L, Monaco, A, Toso, S. Do intensive drive hunts affect wild boar (Sus scrofa) spatial behaviour in Italy? Some evidence and management implications. European Journal of Wildlife Research 2010; 56: 307318.
6.European Food Safety Authority. The community summary report on trends and sources of zoonoses and zoonotic agents in the European Union in 2007. EFSA Journal 2009 (http://www.efsa.europa.eu/de/scdocs/doc/223r.pdf).
7.Martin-Atance, P, et al. Bovine tuberculosis in a free ranging red fox (Vulpes vulpes) from Donana National Park (Spain). Journal of Wildlife Diseases 2006; 41: 435436.
8.Jenkins, HE, Woodroffe, R, Donnelly, CA. The duration of the effects of repeated widespread badger culling on cattle tuberculosis following the cessation of culling. PLoS ONE 2010; 5: e9090.
9.Anon. Pilot badger culls to go ahead in England. Veterinary Record 2011; 169: 668.
10.Robinson, PA, et al. BCG vaccination against tuberculosis in European badgers (Meles meles): a review. Comparative Immunology, Microbiology and Infectious Diseases 2012; 35: 277287.
11.Lesellier, S, et al. Immunological responses following experimental endobronchial infection of badgers (Meles meles) with different doses of Mycobacterium bovis. Veterinary Immunology and Immunopathology, 2009; 127: 174180.
12.Corner, LAL, et al. Oral vaccination of badgers (Meles meles) with BCG and protective immunity against endobronchial challenge with Mycobacterium bovis. Vaccine 2010; 28: 62656272.
13.Lesellier, S, et al. Protection of Eurasian badgers (Meles meles) from tuberculosis after intra-muscular vaccination with different doses of BCG. Vaccine 2011; 29: 37823790.
14.Fera. Badger Vaccine Deployment Project (www.defra.gov.uk/fera/bvdp). Accessed June 2011.
15.White, PCL, Harris, S. Bovine tuberculosis in badger (Meles meles) populations in south-west England: the use of a spatial stochastic simulation model to understand the dynamics of the disease. Philosophical Transactions of the Royal Society of London, Series B 1995; 349: 391413.
16.White, PCL, Harris, S. Bovine tuberculosis in badger (Meles meles) populations in south-west England: an assessment of past, present and possible future control strategies using simulation modelling. Philosophical Transactions of the Royal Society of London, Series B 1995; 349: 415432.
17.Smith, GC, et al. A model of bovine tuberculosis in the badger Meles meles: an evaluation of control strategies. Journal of Animal Ecology 2001; 38: 509519.
18.Wilkinson, D, et al. A model of bovine tuberculosis in the badger Meles meles: an evaluation of different vaccination strategies. Journal of Applied Ecology 2004; 41: 492501.
19.White, PCL, Lewis, AJG, Harris, S. Fertility control as a means of controlling bovine tuberculosis in badger (Meles meles) populations in southwest England: predictions from a spatial stochastic simulation model. Proceedings of the Royal Society of London, Series B 1997; 264: 17371747.
20.Hardstaff, JL, et al. Impact of external sources of infection on the dynamics of bovine tuberculosis in modelled badger populations. BMC Veterinary Research 2012, 8: 92.
21.Barlow, ND. Control of endemic bovine TB in New Zealand possum populations: results from a simple model. Journal of Applied Ecology 1991; 28: 794809.
22.Roberts, MG. The dynamics of bovine tuberculosis in possum populations, and its eradication or control by culling or vaccination. Journal of Animal Ecology 1996; 65: 451464.
23.Ramsey, DSL, Efford, MG. Management of bovine tuberculosis in brushtail possums in New Zealand: predictions from a spatially explicit, individual-based model. Journal of Applied Ecology 2010; 47: 911919.
24.White, PCL, et al. Control of bovine tuberculosis in British livestock: there is no ‘silver bullet’. Trends in Microbiology 2008; 16: 420427.
25.Gallagher, J, et al. Role of infected , non-diseased badgers in the pathogenesis of tuberculosis in the badger. Veterinary Record 1998; 142: 710714.
26.Gavier-Widen, D, et al. Pathology of natural Mycobacterium bovis infection in European badgers (Meles meles) and its relationship with bacterial excretion. Veterinary Record 2001; 148: 299304.
27.Corner, LAL, et al. Mycobacterium bovis infection in the Eurasian badger (Meles meles): the disease, pathogenesis, epidemiology and control. Journal of Comparative Pathology 2011; 144: 124.
28.Lesellier, S, Palmer, S, Dalley, DJ. The safety and immunogenicity of Bacillus Calmette-Guerin (BCG) vaccine in European badgers (Meles meles). Veterinary Immunology and Immunopathology 2006; 112: 2437.
29.Corner, LAL, et al. Vaccination of European badgers (Meles meles) with BCG by the subcutaneous and mucoasal routes induces protective immunity against endobronchial challenge with Mycobacterium bovis. Tuberculosis 2008; 88: 601609.
30.Chambers, MA, et al. Bacillus Calmette-Guerin vaccination reduces the severity and progression of tuberculosis in badgers. Proceedings of the Royal Society of London, Series B 2011; 278: 19131920.
31.Smith, GC, Cheeseman, CL. Efficacy of trapping during the initial proactive culls in the randomised badger culling trial. Veterinary Record 2007; 160: 723726.
32.Byrne, AW, et al. Population estimation and trappability of the European badger (Meles meles): implications for tuberculosis management. PLoS ONE 2012; 7: e50807.
33.Aznar, I, et al. Trial design to estimate the effect of vaccination on tuberculosis incidence in badgers. Veterinary Microbiology 2011; 151: 104111.
34.Wilson, GJ, Carter, SP, Delahay, RJ. Advances and prospects for management of TB transmission between badgers and cattle. Veterinary Microbiology 2011; 151: 4350.
35.R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (http://www.R-project.org). 2010.
36.Ridgeway, G. Generalized Boosted Models: a guide to the GBM package. (www.cran.r-project.org), 2007. Accessed 16 February 2011.
37.Cross, ML, et al. Lipid-formulated BCG as an oral-bait vaccine for tuberculosis: vaccine stability, efficacy, and palatability to brushtail possums (Trichosurus vulpecula) in New Zealand. Journal of Wildlife Diseases 2009; 45: 754765.
38.Qureshi, T, et al. Partial protection against oral challenge with Mycobacterium bovis in ferrets (Mustela furo) following oral vaccination with BCG. International Journal of Tuberculous Lung Disease 1999; 3: 10251033.
39.Nol, P, et al. Efficacy or oral and parental routes of Mycobacterium bovis bacilli calmette-Guerin vaccination against experimental bovine tuberculosis in white-tailed deer (Odocoileus virginianus) a feasibility study. Journal of Wildlife Diseases 2008; 44: 247259.
40.Brandt, L, et al. Failure of the Mycobacterium bovis BCG vaccine: some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. Infection and Immunity 2000; 70: 672678.
41.Corner, LA, et al. The efficacy of bacille Calmette-Guerin vaccine in wild brushtail possums (Trichosurus vulpecula). Res Vet Sci 2002; 73: 145152.
42.Tompkins, DM, et al. Oral vaccination reduces the incidence of tuberculosis in free-living brushtail possums. Proceedings of the Royal Society of London, Series B 2009; 276: 29872995.
43.Smith, GC, Cheesman, CL. Efficacy of trapping during the initial proactive culls in the randomised badger culling trial. Veterinary Record 2007; 160: 723726.
44.Warburton, B, Thomson, C. Comparison of three methods for maintaining possums at low density. Wellington: Department of Conservation, 2002, 20 pp.
45.Sweeney, FP, et al. Immunomagnetic recovery of Mycobacterium bovis from naturally infected environmental sample. Applied and Environmental Microbiology 2006; 43: 364369.
46.Young, JS, Gormley, E, Wellington, EMH. Molecular Detection of Mycobacterium bovis and Mycobacterium bovis BCG (Pasteur) in Soil. Applied and Environmental Mircrobiology 2005; 71: 19461952.
47.Palmer, MV, Whipple, DL. Survival of Mycobacterium bovis on feedstuffs commonly used as supplemental feed for white-tailed deer (Odocoileus virginianus). Journal of Wildlife Diseases 2006; 42: 853858.
48.Michel, AL, et al. Bovine tuberculosis in African buffaloes: observations regarding Mycobacterium bovis shedding into water and exposure to environmental mycobacteria. BMC Veterinary Research 2007; 3: 2330.
49.Mathews, F, et al. Bovine tuberculosis (Mycobacterium bovis) in British farmland wildlife: the importance to agriculture. Proceedings of the Royal Society of London, Series B 2006; 273: 357365.
50.Delahay, RJ, et al. Bovine tuberculosis infection in wild mammals in the South-West region of England: A survey of prevalence and a semi-quantitative assessment of the relative risks to cattle. Veterinary Journal 2007; 173: 287301.
51.Gortazar, C, et al. Progress in the control of bovine tuberculosis in Spanish wildlife. Veterinary Microbiology 2011; 151: 170178.
52.Buddle, BM, et al. Effect of oral vaccination of cattle with lipid-formulated BCG on immune responses and protection against bovine tuberculosis. Vaccine 2005; 23: 35813589.
53.Lopez-Valencia, G, et al. Field evaluation of the protective efficacy of Mycobacterium bovis BCG vaccine against bovine tuberculosis. Research in Veterinary Science 2010; 88: 4449.
54.Buddle, BM, et al. Low oral BCG doses fail to protect cattle against an experimental challenge with Mycobacterium bovis. Tuberculosis 2011; 91: 400405.
55.Hope, JC, et al. Identification of surrogates and correlates of protection in protective immunity against Mycobacterium bovis infection induced in neonatal calves by vaccination with M. bovis BCG Pasteur and M. bovis BCG Danish. Clinical and Vaccine Immunology 2011; 18: 373379.
56.Buddle, BM. Vaccination of cattle against Mycobacterium bovis. Tuberculosis 2001; 81: 125132.
57.Sopp, P, et al. development of a simple, sensitive, rapid test which discriminates BCG-vaccinated from Mycobacterium bovis-infected cattle. Vaccine 2008; 26: 54705476.

Keywords

Type Description Title
WORD
Supplementary materials

Hardstaff Supplementary Material
Supplementary Material

 Word (187 KB)
187 KB

Modelling the impact of vaccination on tuberculosis in badgers

  • J. L. HARDSTAFF (a1), M. T. BULLING (a1), G. MARION (a2), M. R. HUTCHINGS (a3) and P. C. L. WHITE (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed