Skip to main content Accessibility help
×
Home

Mapping of control measures to prevent secondary transmission of STEC infections in Europe during 2016 and revision of the national guidelines in Norway

  • L. Veneti (a1) (a2), H. Lange (a1), L. Brandal (a1), K. Danis (a2) (a3) and L. Vold (a1)...

Abstract

In 2016, we reviewed preventive control measures for secondary transmission of Shiga-toxin producing Escherichia coli (STEC) in humans in European Union (EU)/European Free Trade Association (EEA) countries to inform the revision of the respective Norwegian guidelines which at that time did not accommodate for the varying pathogenic potential of STEC. We interviewed public health experts from EU/EEA institutes, using a semi-structured questionnaire. We revised the Norwegian guidelines using a risk-based approach informed by the new scientific evidence on risk factors for HUS and the survey results. All 13 (42%) participating countries tested STEC for Shiga toxin (stx) 1, stx2 and eae (encoding intimin). Five countries differentiated their control measures based on clinical and/or microbiological case characteristics, but only Denmark based their measures on routinely conducted stx subtyping. In all countries, but Norway, clearance was obtained with ⩽3 negative STEC specimens. After this review, Norway revised the STEC guidelines and recommended only follow-up of cases infected with high-virulent STEC (determined by microbiological and clinical information); clearance is obtained with three negative specimens. Implementation of the revised Norwegian guidelines will lead to a decrease of STEC cases needing follow-up and clearance, and will reduce the burden of unnecessary public health measures and the socioeconomic impact on cases. This review of guidelines could assist other countries in adapting their STEC control measures.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mapping of control measures to prevent secondary transmission of STEC infections in Europe during 2016 and revision of the national guidelines in Norway
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mapping of control measures to prevent secondary transmission of STEC infections in Europe during 2016 and revision of the national guidelines in Norway
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mapping of control measures to prevent secondary transmission of STEC infections in Europe during 2016 and revision of the national guidelines in Norway
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: L. Veneti, E-mail: Lamprini.Veneti@fhi.no

References

Hide All
1.Webster, K and Schnitzler, E (2014) Hemolytic uremic syndrome. Handbook of Clinical Neurology 120, 11131123.
2.Thomas, D and Elliott, E (2013) Interventions for preventing diarrhea-associated hemolytic uremic syndrome: systematic review. BMC Public Health 13(1), 799. doi: 10.1186/1471-2458-13-799.
3.FAO (2018) Shiga toxin-producing Escherichia coli (STEC) and food: attribution, characterization, and monitoring. [online] FAO. Available at http://www.fao.org/3/ca0032en/CA0032EN.pdf.
4.Fruth, A et al. (2015) Molecular epidemiological view on Shiga toxin-producing Escherichia coli causing human disease in Germany: diversity, prevalence, and outbreaks. International Journal of Medical Microbiology 305, 697704. Published online: 2015. doi: 10.1016/j.ijmm.2015.08.020.
5.Byrne, L et al. (2014) Epidemiology and microbiology of Shiga toxin-producing Escherichia coli other than serogroup O157 in England, 2009–2013. Journal of Medical Microbiology 63(Pt_9), 11811188. Published online: 2014. doi: 10.1099/jmm.0.075895-0.
6.Brandal, LT et al. (2015) Shiga toxin-producing Escherichia coli infections in Norway, 1992–2012: characterization of isolates and identification of risk factors for haemolytic uremic syndrome. BMC Infectious Diseases 15, 324. Published online: 2015. doi: 10.1186/s12879-015-1017-6.
7.Ethelberg, S et al. (2004) Virulence factors for hemolytic uremic syndrome, Denmark. Emerging Infectious Diseases 10, 842847. Published online: 2004. doi: 10.3201/eid1005.030576.
8.Scheutz, F (2014) Taxonomy meets public health: the case of Shiga toxin-producing Escherichia coli. Microbiology Spectrum 2(3). doi: 10.1128/microbiolspec.ehec-0019-2013.
9.Buvens, G et al. (2012) Incidence and virulence determinants of verocytotoxin-producing Escherichia coli infections in the Brussels-Capital Region, Belgium, in 2008–2010. Journal of Clinical Microbiology 50, 13361345. Published online: 2012. doi: 10.1128/jcm.05317-11.
10.Haugum, K et al. (2014) Comparative genomics to delineate pathogenic potential in non-O157 Shiga toxin-producing Escherichia coli (STEC) from patients with and without haemolytic uremic syndrome (HUS) in Norway. PLoS ONE 9, e111788. Published online: 2014. doi: 10.1371/journal.pone.0111788.
11.Haugum, K et al. (2014) PCR-based detection and molecular characterization of Shiga toxin-producing Escherichia coli strains in a routine microbiology laboratory over 16 years. Forbes BA, ed. Journal of Clinical Microbiology 52, 31563163. Published online: 2014. doi:10.1128/JCM.00453-14.
12.Naseer, U et al. (2017) Virulence factors of Shiga toxin-producing Escherichia coli and the risk of developing haemolytic uraemic syndrome in Norway, 1992–2013. European Journal of Clinical Microbiology & Infectious Diseases 36, 16131620. Published online: 2017. doi:10.1007/s10096-017-2974-z.
13.EFSA (2016) EFSA report, December 2016. Available at http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2016.4634/abstract.
14.Norwegian Institute of Public Health. National guidelines for E. coli-enteritis. Available at https://www.fhi.no/nettpub/smittevernveilederen/sykdommer-a-a/e.-coli-enteritt-inkludert-ehec-inf/.
15.Jenssen, G et al. (2019) Implementation of multiplex PCR diagnostics for gastrointestinal pathogens linked to increase of notified Shiga toxin-producing Escherichia coli cases in Norway, 2007–2017. European Journal of Clinical Microbiology & Infectious Diseases 38(4), 801809. doi: 10.1007/s10096-019-03475-5.
16.Statens Serum Institut. National guidelines for hemolytic uremic syndrome. Available at https://www.ssi.dk/sygdomme-beredskab-og-forskning/sygdomsleksikon/h/haemolytisk-uraemisk-syndrom.
17.Brown, JA et al. (2012) Outbreak of Shiga toxin-producing Escherichia coli serotype O26: H11 infection at a child care center in Colorado. The Pediatric Infectious Disease Journal 31, 379383. Published online: 2012. doi: 10.1097/inf.0b013e3182457122.
18.Dabke, G et al. (2013) Duration of shedding of verocytotoxin-producing Escherichia coli in children and risk of transmission in childcare facilities in England. Epidemiology and Infection 142, 327334. Published online: 2013. doi: 10.1017/s095026881300109X.
19.Haltalin, KC et al. (1972) Treatment of acute diarrhea in outpatients: double-blind study comparing ampicillin and placebo. American Journal of Diseases of Children 124:554. Published: 1972. doi: 10.1001/archpedi.1972.02110160092010.
20.MacDonald, E et al. (2014) Implications of screening and childcare exclusion policies for children with Shiga-toxin producing Escherichia coli infections: lessons learned from an outbreak in a daycare centre, Norway, 2012. BMC Infectious Diseases 14, 673. Published online: 2014. doi: 10.1186/s12879-014-0673-2.
21.Vonberg, RP et al. (2013) Duration of fecal shedding of Shiga toxin-producing Escherichia coli O104:H4 in patients infected during the 2011 outbreak in Germany: a multicentre study. Clinical Infectious Diseases 56, 11321140. Published online: 2013. doi: 10.1093/cid/cis1218.
22.European Centre for Disease Prevention and Control (2016) Systematic Review on the Incubation and Infectiousness/Shedding Period of Communicable Diseases in Children. Stockholm: ECDC. Available at https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/systematic-review-incubation-period-shedding-children.pdf.

Keywords

Type Description Title
WORD
Supplementary materials

Veneti et al. supplementary material
Veneti et al. supplementary material

 Word (47 KB)
47 KB

Mapping of control measures to prevent secondary transmission of STEC infections in Europe during 2016 and revision of the national guidelines in Norway

  • L. Veneti (a1) (a2), H. Lange (a1), L. Brandal (a1), K. Danis (a2) (a3) and L. Vold (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.