Skip to main content Accessibility help
×
Home

Longitudinal investigation of carriage rates and genotypes of toxigenic Clostridium difficile in hepatic cirrhosis patients

  • Yunbo Chen (a1), Hongqin Gu (a2), Tao lv (a1), Dong Yan (a1), Qiaomai Xu (a1), Silan Gu (a1), Ping Shen (a1), Jiazheng Quan (a1), Yunhui Fang (a1), Lifeng Chen (a3), Guangyong Ye (a4) and Lanjuan Li (a1)...

Abstract

Toxigenic Clostridium difficile (C. difficile) carriers represent an important source in the transmission of C. difficile infection (CDI) during hospitalisation, but its prevalence and mode in patients with hepatic cirrhosis are not well established. We investigated longitudinal changes in carriage rates and strain types of toxigenic C. difficile from admission to discharge among hepatic cirrhosis patients. Toxigenic C. difficile was detected in 104 (19.8%) of 526 hepatic cirrhosis patients on admission, and the carriage status changed in a portion of patients during hospitalisation. Approximately 56% (58/104) of patients lost the colonisation during their hospital stay. Among the remaining 48 patients who remained positive for toxigenic C. difficile, the numbers of patients who were positive at one, two, three and four isolations were 10 (55.6%), three (16.7%), two (11.1%) and three (16.7%), respectively. Twenty-eight patients retained a particular monophyletic strain at multiple isolations. The genotype most frequently identified was the same as that frequently identified in symptomatic CDI patients. A total of 25% (26/104) of patients were diagnosed with CDI during their hospital stay. Conclusions: Colonisation with toxigenic C. difficile strains occurs frequently in cirrhosis patients and is a risk factor for CDI.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Longitudinal investigation of carriage rates and genotypes of toxigenic Clostridium difficile in hepatic cirrhosis patients
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Longitudinal investigation of carriage rates and genotypes of toxigenic Clostridium difficile in hepatic cirrhosis patients
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Longitudinal investigation of carriage rates and genotypes of toxigenic Clostridium difficile in hepatic cirrhosis patients
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Lanjuan Li, E-mail: ljli@zju.edu.cn

Footnotes

Hide All
*

Yunbo Chen and Hongqin Qu contributed equally to this work.

Footnotes

References

Hide All
1.Daneman, N et al. (2015) The association of hospital prevention processes and patient risk factors with the risk of Clostridium difficile infection: a population-based cohort study. BMJ Quality & Safety 24, 435443.
2.Kelly, CP, Pothoulakis, C and LaMont, JT (1994) Clostridium difficile colitis. The New England Journal of Medicine 330, 257262.
3.Kuijper, EJ et al. (2006) Emergence of Clostridium difficile-associated disease in North America and Europe. Clinical Microbiology and Infection 12(suppl. 6), 218.
4.Leffler, DA and Lamont, JT (2015) Clostridium difficile Infection. The New England Journal of Medicine 373, 287288.
5.Gerding, DN et al. (1986) Clostridium difficile – diarrhea and colitis in adults. A prospective case-controlled epidemiologic study. Archives of Internal Medicine 146, 95100.
6.Guerrero, DM et al. (2013) Asymptomatic carriage of toxigenic Clostridium difficile by hospitalized patients. The Journal of Hospital Infection 85, 155158.
7.Polage, CR, Solnick, JV and Cohen, SH (2012) Nosocomial diarrhea: evaluation and treatment of causes other than Clostridium difficile. Clinical Infectious Diseases 55, 982989.
8.Clabots, CR et al. (1992) Acquisition of Clostridium difficile by hospitalized patients: evidence for colonized new admissions as a source of infection. The Journal of Infectious Diseases 166, 561567.
9.Longtin, Y et al. (2016) Effect of detecting and isolating Clostridium difficile carriers at hospital admission on the incidence of C difficile infections: a quasi-experimental controlled study. JAMA Internal Medicine 176, 796804.
10.Zacharioudakis, IM et al. (2015) Colonization with toxinogenic C. difficile upon hospital admission, and risk of infection: a systematic review and meta-analysis. The American Journal of Gastroenterology 110, 381390, quiz 391.
11.Leekha, S et al. (2013) Asymptomatic Clostridium difficile colonization in a tertiary care hospital: admission prevalence and risk factors. American Journal of Infection Control 41, 390393.
12.Hung, YP et al. (2012) Impact of toxigenic Clostridium difficile colonization and infection among hospitalized adults at a district hospital in southern Taiwan. PLoS ONE 7, e42415.
13.Donskey, CJ, Kundrapu, S and Deshpande, A (2015) Colonization versus carriage of Clostridium difficile. Infectious Disease Clinics of North America 29, 1328.
14.Curry, SR et al. (2013) Use of multilocus variable number of tandem repeats analysis genotyping to determine the role of asymptomatic carriers in Clostridium difficile transmission. Clinical Infectious Diseases 57, 10941102.
15.Truong, C et al. (2017) Clostridium difficile rates in asymptomatic and symptomatic hospitalized patients using nucleic acid testing. Diagnostic Microbiology and Infectious Disease 87, 365370.
16.Rivera, EV and Woods, S (2003) Prevalence of asymptomatic Clostridium difficile colonization in a nursing home population: a cross-sectional study. The Journal of Gender-Specific Medicine 6, 2730.
17.Ozaki, E et al. (2004) Clostridium difficile colonization in healthy adults: transient colonization and correlation with enterococcal colonization. Journal of Medical Microbiology 53, 167172.
18.Kelly, SG et al. (2016) Inappropriate Clostridium difficile testing and consequent overtreatment and inaccurate publicly reported metrics. Infection Control and Hospital Epidemiology 37, 13951400.
19.Lewis, SJ and Heaton, KW (1997) Stool form scale as a useful guide to intestinal transit time. Sc Candinavian Journal of Gastroenterology 32, 920924.
20.Shin, BM et al. (2016) Evaluation of the VIDAS glutamate dehydrogenase assay for the detection of Clostridium difficile. Anaerobe 40, 6872.
21.Kato, H et al. (1998) Identification of toxin A-negative, toxin B-positive Clostridium difficile by PCR. Journal of Clinical Microbiology 36, 21782182.
22.Stubbs, S et al. (2000) Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile. FEMS Microbiology Letters 186, 307312.
23.Griffiths, D et al. (2010) Multilocus sequence typing of Clostridium difficile. Journal of Clinical Microbiology 48, 770778.
24.Gateau, C et al. (2017) How to: Diagnose infection caused by Clostridium difficile. Clinical Microbiology and Infection 24, 463468.
25.Bassis, CM et al. (2017) Comparison of stool versus rectal swab samples and storage conditions on bacterial community profiles. BMC Microbiology 17, 78.
26.Kong, LY et al. (2015) Predictors of asymptomatic Clostridium difficile colonization on hospital admission. American Journal of Infection Control 43, 248253.
27.Loo, VG et al. (2011) Host and pathogen factors for Clostridium difficile infection and colonization. The New England Journal of Medicine 365, 16931703.
28.Chen, YB et al. (2017) Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from hospitals during a 4-year period in China. Journal of Medical Microbiology. 67, 5259.
29.Gao, Q et al. (2016) Toxin profiles, PCR ribotypes and resistance patterns of Clostridium difficile: a multicentre study in China, 2012–2013. International Journal of Antimicrobial Agents 48, 736739.
30.Wang, R et al. (2017) Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from the Chinese People's Liberation Army General Hospital in China. International Journal of Infectious Diseases 67, 8691.
31.Yan, D et al. (2017) Clostridium difficile colonization and infection in patients with hepatic cirrhosis. Journal of Medical Microbiology 66, 14831488.
32.Lanzas, C et al. (2011) Epidemiological model for Clostridium difficile transmission in healthcare settings. Infection Control and Hospital Epidemiology 32, 553561.
33.Kagan, S et al. (2017) The risk for Clostridium difficile colitis during hospitalization in asymptomatic carriers. The Journal of Hospital Infection 95, 442443.
34.Yakob, L et al. (2014) Assessing control bundles for Clostridium difficile: a review and mathematical model. Emerging Microbes & Infections 3, e43.
35.Shim, JK et al. (1998) Primary symptomless colonisation by Clostridium difficile and decreased risk of subsequent diarrhoea. Lancet 351, 633636.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed