Skip to main content Accessibility help
×
Home

Longitudinal and spatial distribution of GP60 subtypes in human cryptosporidiosis cases in Ireland

  • A. ZINTL (a1), M. EZZATY-MIRASHEMI (a1), R. M. CHALMERS (a2), K. ELWIN (a2), G. MULCAHY (a1), F. E. LUCY (a3) and T. DE WAAL (a1)...

Summary

Within Europe, Ireland has one of the highest reported infection rates with the diarrhoeal protozoan pathogen Cryptosporidium. In this study 249 Cryptosporidium parvum isolates collected from Irish patients between 2000 and 2009 were subtyped by sequence analysis of the GP60 locus. A subsample of 127 isolates was also typed at the MS1 and ML1 loci. GP60 subtype IIaA18G3R1 was the predominant subtype in every year and every season throughout the country. Over the 10-year period there was no evidence that host immunity to the predominant subtype caused a shift in its prevalence. Length frequency distributions of the GP60 TCA/TCG repeats compiled from published data, showed distinct patterns for countries with predominantly zoonotic or anthroponotic transmission cycles, respectively. Although considered to be mostly affected by zoonotic cryptosporidiosis, the GP60 fragment length of Irish C. parvum isolates mirrored that of countries with predominantly human-to-human transmission, indicating more complex routes of infection between livestock and humans. Due to their homogeneity, ML1 and MS1 were not considered useful loci for subtyping C. parvum strains in Ireland.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Longitudinal and spatial distribution of GP60 subtypes in human cryptosporidiosis cases in Ireland
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Longitudinal and spatial distribution of GP60 subtypes in human cryptosporidiosis cases in Ireland
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Longitudinal and spatial distribution of GP60 subtypes in human cryptosporidiosis cases in Ireland
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr A. Zintl, UCD Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland. (Email: annetta.zintl@ucd.ie)

References

Hide All
1.Tzipori, S, Ward, H. Cryptosporidiosis: biology, pathogenesis and disease. Microbes and Infection 2002; 4: 10471058.
2.Cacció, S. Molecular epidemiology of human cryptosporidiosis. Parassitologia 2005; 47: 185192.
3.Health Protection Surveillance Centre. Annual report: Infectious intestinal diseases, 2008. 3·2 Cryptosporidiosis, pp. 4344 (www.hpsc.ie/hpsc/AboutHPSC/AnnualReports/). Accessed 18 November 2010.
4.Zintl, A, et al. The prevalence of Cryptosporidium species and subtypes in human faecal samples in Ireland. Epidemiology and Infection 2008; 137: 270277.
5.Peng, M, et al. A comparison of Cryptosporidium subgenotypes from several geographic regions. Journal of Eukaryotic Microbiology 2001; 48 (Suppl.): 28s31s.
6.Alves, M, et al. Subgenotype analysis of Cryptosporidium isolates from humans, cattle, and zoo ruminants in Portugal. Journal of Clinical Microbiology 2003; 41: 27442747.
7.Chalmers, R, et al. Direct comparison of selected methods for genetic categorisation of Cryptosporidium parvum and Cryptosporidium hominis species. International Journal for Parasitology 2005; 35: 397410.
8.Mallon, M, et al. Population structures and the role of genetic exchange in the zoonotic pathogen Cryptosporidium parvum. Journal of Molecular Evolution 2003; 56: 407417.
9.Xiao, L, Ryan, UM. Molecular epidemiology. In: Fayer, R, Xiao, L, eds. Cryptosporidium and Cryptosporidiosis, 2nd edn. Boca Raton: CRC Press, Taylor & Francis Group, 2008, pp. 119171.
10.Cacciò, S, et al. A microsatellite marker reveals population heterogeneity within human and animal genotypes of Cryptosporidium parvum. Parasitology 2000; 120: 237244.
11.Sulaiman, I, et al. Unique endemicity of cryptosporidiosis in children in Kuwait. Journal of Clinical Microbiology 2005; 43: 28052809.
12.Glaberman, S, et al. Three drinking-water-associated cryptosporidiosis outbreaks, Northern Ireland. Emerging Infectious Diseases 2002; 8: 631633.
13.Ng, J, et al. Molecular characterisation of Cryptosporidium outbreaks in Western and South Australia. Experimental Parasitology 2010; 125: 325328.
14.O'Brien, E, McInnes, L, Ryan, U. Cryptosporidium GP60 genotypes from humans and domesticated animals in Australia, North America and Europe. Experimental Parasitology 2008; 118: 118121.
15.Jex, A, et al. Classification of Cryptosporidium species from patients with sporadic cryptosporidiosis by use of sequence-based multilocus analysis following mutation scanning. Journal of Clinical Microbiology 2008; 46: 22522262.
16.Waldron, L, Ferrari, B, Power, M. Glycoprotein 60 diversity in C. hominis and C. parvum causing human cryptosporidiosis in NSW, Australia. Experimental Parasitology 2009; 122: 124127.
17.Ng, J, et al. Evidence supporting zoonotic transmission of Cryptosporidium in rural New South Wales. Experimental Parasitology 2008; 119: 192195.
18.Ng, J, MacKenzie, B, Ryan, U. Longitudinal multi-locus molecular characterisation of sporadic Australian human clinical cases of cryptosporidiosis from 2005 to 2008. Experimental Parasitology 2010; 125: 348356.
19.Grinberg, A, et al. Genetic diversity and zoonotic potential of Cryptosporidium parvum causing foal diarrhoea. Journal of Clinical Microbiology 2008; 46: 23962398.
20.Thompson, H, et al. Genotypes and subtypes of Cryptosporidium spp. in neonatal calves in Northern Ireland. Parasitology Research 2007; 100: 619624.
21.Chalmers, R, Giles, M. Zoonotic cryptosporidiosis in the UK – challenges for control. Journal of Applied Microbiology 2010; 109: 14871497.
22.Hijjawi, N, et al. Identification of rare and novel Cryptosporidium GP60 subtypes in human isolates from Jordan. Experimental Parasitology 2010; 125: 161164.
23.Nolan, M, et al. Genetic characterization of Cryptosporidium parvum from calves by mutation scanning and targeted sequencing-zoonotic implications. Electrophoresis 2009; 30: 26402647.
24.Geurden, T, et al. Multilocus genotyping of Cryptosporidium and Giardia in non-outbreak related cases of diarrhoea in human patients in Belgium. Parasitology 2009; 136: 11611168.
25.Wielinga, P, et al. Molecular epidemiology of Cryptosporidium in humans and cattle in The Netherlands. International Journal for Parasitology 2008; 38: 809817.
26.Alves, M, et al. Distribution of Cryptosporidium subtypes in humans and domestic and wild ruminants in Portugal. Parasitology Research 2006; 99: 287292.
27.Stantic-Pavlinic, M, et al. Cryptosporidiosis associated with animal contacts. Wiener Klinische Wochenschrift 2003; 115: 125127.
28.Soba, B, Logar, J. Genetic classification of Cryptosporidium isolates from humans and calves in Slovenia. Parasitology 2008; 135: 12631270.
29.Adamu, H, et al. Molecular characterization of Cryptosporidium isolates from humans in Ethiopia. Acta Tropica 2010; 115: 7783.
30.Blackburn, B, et al. Cryptosporidiosis associated with ozonated apple cider. Emerging Infectious Diseases 2006; 12: 684686.
31.Feltus, D, et al. Evidence supporting zoonotic transmission of Cryptosporidium spp. in Wisconsin. Journal of Clinical Microbiology 2006; 44: 43034308.
32.Brook, E, et al. Molecular epidemiology of Cryptosporidium subtypes in cattle in England. Veterinary Journal 2009; 179: 378382.
33.Geurden, T, et al. Molecular epidemiology with subtype analysis of Cryptosporidium in calves in Belgium. Parasitology 2007; 134: 19811987.
34.Broglia, A, et al. Distribution of Cryptosporidium parvum subtypes in calves in Germany. Veterinary Parasitology 2008; 154: 8–13.
35.Duranti, A, et al. Risk factors associated with Cryptosporidium parvum infection in cattle. Zoonoses and Public Health 2009; 56: 176182.
36.Díaz, P, et al. Genotype and subtype analysis of Cryptosporidium isolates from calves and lambs in Galicia (NW Spain). Parasitology 2010; 137: 11871193.
37.Quílez, J, et al. Cryptosporidium genotypes and subtypes in lambs and goat kids in Spain. Applied and Environmental Microbiology 2008; 74: 60266031.
38.Santín, M. A longitudinal study of cryptosporidiosis in dairy cattle from birth to 2 years of age. Veterinary Parasitology 2008; 155: 1523.
39.Xiao, L, et al. Distribution of Cryptosporidium parvum subtypes in calves in eastern United States. Parasitology Research 2007; 100: 701706.
40.Xiao, L. Molecular epidemiology of cryptosporidiosis: an update. Experimental Parasitology 2010; 124: 8089.
41.Trotz-Williams, L, et al. Genotype and subtype analyses of Cryptosporidium isolates from dairy calves and humans in Ontario. Parasitology Research 2006; 99: 346352.
42.Peng, M, et al. Genetic diversity of Cryptosporidium spp. in cattle in Michigan: implications for understanding the transmission dynamics. Parasitology Research 2003; 90: 175180.
43.Smith, R, et al. Investigation of farms linked to human patients with cryptosporidiosis in England and Wales. Preventive Veterinary Medicine 2010; 94: 9–17.
44.Plutzer, J, Karanis, P. Genotype and subtype analyses of Cryptosporidium isolates from cattle in Hungary. Veterinary Parasitology 2007; 146: 357362.
45.Misic, Z, Abe, N. Subtype analysis of Cryptosporidium parvum isolates from calves on farms around Belgrade, Serbia and Montenegro, using the 60 kDa glycoprotein gene sequences. Parasitology 2007; 134: 351358.
46.Leav, B, et al. Analysis of sequence diversity at the highly polymorphic Cpgp40/15 locus among Cryptosporidium isolates from human immunodeficiency virus-infected children in South Africa. Infection and Immunity 2002; 70: 38813890.
47.Widmer, G. Meta-analysis of a polymorphic surface glycoprotein of the parasitic protozoa Cryptosporidium parvum. Epidemiology and Infection 2009; 137: 18001808.
48.Pelly, H, et al. A large outbreak of cryptosporidiosis in western Ireland linked to public water supply: a preliminary report. Eurosurveillance 2007; 12: 3187.
49.Enemark, H, et al. Molecular characterization of Danish Cryptosporidium parvum isolates. Parasitology 2003; 125: 331341.
50.Abe, N, et al. Subgenotype analysis of Cryptosporidium parvum isolates from humans and animals in Japan using the 60-kDa glycoprotein gene sequences. Parasitology Research 2006; 99: 303305.
51.Wu, Z, et al. Intraspecies polymorphism of Cryptosporidium parvum revealed by PCR-restriction fragment length polymorphism (RFLP) and RFLP-single-strand conformational polymorphism analyses. Applied and Environmental Microbiology 2003; 69: 47204726.
52.Kvác, M, et al. Molecular characterization of Cryptosporidium isolates from pigs at slaughterhouses in South Bohemia, Czech Republic. Parasitology Research 2009; 104: 425428.
53.Silverlås, C, et al. Molecular characterisation of Cryptosporidium isolates from Swedish dairy cattle in relation to age, diarrhoea and region. Veterinary Parasitology 2010; 169: 289295.
54.Cheng, H, et al. Fate of Cryptosporidium parvum and Cryptosporidium hominis oocysts and Giardia duodenalis cysts during secondary wastewater treatments. Parasitology Research 2009; 105: 689696.
55.Environmental Protection Agency. Treatment systems for single houses, 24 August 2005 (www.epa.ie/news/pr/2005/aug/name,12000,en.html). Accessed 18 November 2010.
56.Mallon, M, et al. Multilocus genotyping of Cryptosporidium parvum Type 2: population genetics and sub-structuring. Infection, Genetics and Evolution 2003; 3: 207218.
57.Cacciò, S, Spano, F, Pozio, E. Large sequence variation at two microsatellite loci among zoonotic (genotype C) isolates of Cryptosporidium parvum. International Journal for Parasitology 2001; 31: 10821086.
58.Huetink, R, et al. Epidemiology of Cryptosporidium spp. and Giardia duodenalis on a dairy farm. Veterinary Parasitology 2001; 102: 5367.
59.Leoni, F, et al. Multilocus analysis of Cryptosporidium hominis and Cryptosporidium parvum isolates from sporadic and outbreak-related human cases and C. parvum isolates from sporadic livestock cases in the United Kingdom. Journal of Clinical Microbiology 2007; 45: 32863294.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed