Skip to main content Accessibility help
×
×
Home

Incidence and risk factors for healthcare utilisation among patients discharged on outpatient parenteral antimicrobial therapy

  • D. M. Jacobs (a1), W-Y. Leung (a1), D. Essi (a1), W. Park (a1), A. Shaver (a1), J. Claus (a2), C. Ruh (a3) and G. G. Rao (a4)...

Abstract

Outpatient parenteral antimicrobial therapy (OPAT) programmes facilitate hospital discharge, but patients remain at risk of complications and consequent healthcare utilisation (HCU). Here we elucidated the incidence of and risk factors associated with HCU in OPAT patients. This was a retrospective, single-centre, case–control study of adult patients discharged on OPAT. Cases (n = 63) and controls (n = 126) were patients that did or did not utilise the healthcare system within 60 days. Characteristics associated with HCU in bivariate analysis (P ≤ 0.2) were included in a multivariable logistic regression model. Variables were retained in the final model if they were independently (P < 0.05) associated with 60-day HCU. Among all study patients, the mean age was 55 ± 16, 65% were men, and wound infection (22%) and cellulitis (14%) were common diagnoses. The cumulative incidence of 60-day unplanned HCU was 27% with a disproportionately higher incidence in the first 30 days (21%). A statin at discharge (adjusted odds ratios (aOR) 0.23, 95% confidence intervals (CIs) 0.09–0.57), number of prior admissions in past 12 months (aOR 1.48, 95% CIs 1.05–2.10), and a sepsis diagnosis (aOR 4.62, 95% CIs 1.23–17.3) were independently associated with HCU. HCU was most commonly due to non-infection related complications (44%) and worsening primary infection (31%). There are multiple risk factors for HCU in OPAT patients, and formal OPAT clinics may help to risk stratify and target the highest risk groups.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Incidence and risk factors for healthcare utilisation among patients discharged on outpatient parenteral antimicrobial therapy
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Incidence and risk factors for healthcare utilisation among patients discharged on outpatient parenteral antimicrobial therapy
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Incidence and risk factors for healthcare utilisation among patients discharged on outpatient parenteral antimicrobial therapy
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence: David M. Jacobs, E-mail: dmjacobs@buffalo.edu

References

Hide All
1.Tice, AD, et al. (2004) Practice guidelines for outpatient parenteral antimicrobial therapy. IDSA guidelines. Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America 38(12), 16511672.
2.Williams, DN, et al. (1997) Practice guidelines for community-based parenteral anti-infective therapy. ISDA practice guidelines committee. Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America 25(4), 787801.
3.Seaton, RA and Barr, DA (2013) Outpatient parenteral antibiotic therapy: principles and practice. European Journal of Internal Medicine 24(7), 617623.
4.Chapman, AL, et al. (2009) Clinical efficacy and cost-effectiveness of outpatient parenteral antibiotic therapy (OPAT): a UK perspective. Journal of Antimicrobial Chemotherapy 64(6), 13161324.
5.Wai, AO, et al. (2000) Cost analysis of an adult outpatient parenteral antibiotic therapy (OPAT) programme. A Canadian teaching hospital and ministry of health perspective. PharmacoEconomics 18(5), 451457.
6.Yan, M, et al. (2016) Patient characteristics and outcomes of outpatient parenteral antimicrobial therapy: a retrospective study. Canadian Journal of Infectious Diseases and Medical Microbiology 2016, 5.
7.Means, L, et al. (2016) Predictors of hospital readmission in patients receiving outpatient parenteral antimicrobial therapy. Pharmacotherapy 36(8), 934939.
8.Allison, GM, et al. (2014) Prediction model for 30-day hospital readmissions among patients discharged receiving outpatient parenteral antibiotic therapy. Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America 58(6), 812819.
9.Harris, PA, et al. (2009) Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics 42(2), 377381.
10.Charlson, ME, et al. (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. Journal of Chronic Diseases 40(5), 373383.
11.Chopra, V, et al. (2015) Patterns, risk factors and treatment associated with PICC-DVT in hospitalized adults: a nested case-control study. Thrombosis Research 135(5), 829834.
12.Duncan, CJA, et al. (2013) Risk factors for failure of outpatient parenteral antibiotic therapy (OPAT) in infective endocarditis. Journal of Antimicrobial Chemotherapy 68(7), 16501654.
13.Huck, D, et al. (2014) Association of laboratory test result availability and rehospitalizations in an outpatient parenteral antimicrobial therapy programme. Journal of Antimicrobial Chemotherapy 69(1), 228233.
14.Goodwin, AJ, et al. (2015) Frequency, cost and risk factors of readmissions among severe sepsis survivors. Critical Care Medicine 43(4), 738746.
15.Nkemdirim Okere, A and Renier, CM (2015) Effects of statins on hospital length of stay and All-cause readmissions Among hospitalized patients With a primary diagnosis of sepsis. Annals of Pharmacotherapy 49(12), 12731283.
16.Patel, JM, et al. (2012) Randomized double-blind placebo-controlled trial of 40 mg/day of atorvastatin in reducing the severity of sepsis in ward patients (ASEPSIS trial). Critical Care 16(6), R231.
17.Mosher, HJ, et al. (2014) Prevalence and characteristics of hospitalized adults on chronic opioid therapy. Journal of Hospital Medicine 9(2), 8287.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed