Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-05T04:42:07.241Z Has data issue: false hasContentIssue false

Human antibody response to fragments A and B of diphtheria toxin and a synthetic peptide of amino acid residues 141–157 of fragment A

Published online by Cambridge University Press:  15 May 2009

V. Y. Perera
Affiliation:
Division of Bacteriology, National Institute of Biological Standards and Control, Blanche Lane, South Minims, Potters Bar, Herts EN6 3QG, England
M. J. Corbel
Affiliation:
Division of Bacteriology, National Institute of Biological Standards and Control, Blanche Lane, South Minims, Potters Bar, Herts EN6 3QG, England
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Examination of a selection of serum samples from adults from two regions of England showed that 50 % of men in the 16–24 years and over 55 years age groups had high titres of antibody to diphtheria toxin (DT). In contrast, only 11% of women aged 16 to over 55 years had high titres of antibody to DT. All human antisera with high anti-DT titres reacted with a synthetic peptide (SP) corresponding to the amino acids 141–157 of DT fragment A, with sera from men aged 35 to over 55 years showing the highest titres. High antibody titres to fragment A paralleled those to SP in both sexes. Titres of antibody to DT fragment B were highest in individuals with high titres to DT. In sera from both sexes immunoglobulin G1 was the predominant subclass reactive with all three antigens. However, both IgG1 and IgG4 and to a lesser extent IgG2 and IgG3 were present in immunoglobulin concentrates.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

REFERENCES

1.Ramon, G. Sur le pouvoir flocculant et sur les propriétés immunisantes d'un toxine diphtherique rendue anatoxique (anatoxine). C Soc Biol Paris 1923; 1777: 1338–40.Google Scholar
2.Wilson, GS, Miles, A. In: Topley, Wilson, GS eds. Principles of bacteriology, virology and immunity 6th ed.London: Edward Arnold Ltd, 1975: 1672–94, 1800–42.Google Scholar
3.Pappenheimer, AM. Diphtheria. In: Germanier, R, ed. Bacterial vaccines. New York: Academic Press, 1984: 136.Google Scholar
4.Naumann, P. Diphtheria in West Germany. Commun Dis Rep 1983; 28; 3.Google Scholar
5.Simonsen, O, Kjeldsen, K, Vendborg, H-A, Heron, I. Revaccination of adults against diphtheria 1: Responses and reactions to different doses of diphtheria toxoid in 30–70-year-old persons with low serum antitoxin levels. Acta Path Microbiol Immunol Scand C 1986; 94: 213–8.Google Scholar
6.Rappuoli, R, Perugini, M, Falsen, E. Molecular epidemiology of the 1984–1986 outbreak of diphtheria in Sweden. Engl J Med 1988; 318: 12–4.CrossRefGoogle ScholarPubMed
7.Galazka, A, Keja, J. Diphtheria: Incidence trends and age-wise changes of immunity. Scand J Infect Dis 1988; 20; 355–6.CrossRefGoogle ScholarPubMed
8.Christenson, B, Böttiger, M. Serological immunity to diphtheria in Sweden in 1978 and 1984. Scand J Infect Dis 1986; 18; 227–33.CrossRefGoogle ScholarPubMed
9. Anonymous. Diphtheria, tetanus, and pertussis. Guidelines for vaccine prophylaxis and other preventive measures. Immunization Practices Advisory Committee. Centers for Disease Control. Ann Int Med 1981; 95: 723–8.CrossRefGoogle Scholar
10.Pappenheimer, AM. Diphtheria toxin. Ann Rev Biochem 1977; 46: 6993.CrossRefGoogle ScholarPubMed
11.Pappenheimer, AM, Uchida, T, Harper, AA. An immunological study of the diphtheria toxin molecule. Immunochemistry 1972; 9: 891906.CrossRefGoogle ScholarPubMed
12.Porro, M, Saletti, M, Nencioni, L, Tagliaferri, L, Marsili, I. Immunogenic correlation between cross-reacting material (CRM 197) produced by a mutant of Corynebacterium diphtheriae and diphtheria toxoid. J Infect Dis 1980; 142: 716–24.CrossRefGoogle ScholarPubMed
13.Giannini, G, Rappuoli, R, Ratti, G. The amino acid sequence of two non-toxic mutants of diphtheria toxin: CRM 45 and 197. Nucleic Acids Res 1984; 12: 4063–8.CrossRefGoogle Scholar
14.Seppalä, IJT, Sarvas, H, Makela, O, Mattila, P, Eskola, J, Kayhty, H. Human antibody responses to two conjugate vaccines of Haemophilus influenzae type B saccharides and diphtheria toxin. Scand J Immunol 1988; 28: 471–9.CrossRefGoogle ScholarPubMed
15.Audibert, F, Jolivet, M, Chedis, L, Alouf, JE, Boquet, P, Siffert, O. Active antitoxic immunization by a diphtheria toxin synthetic oligopeptide. Nature 1981; 289: 593–4.CrossRefGoogle ScholarPubMed
16.Audibert, F, Jolivet, M, Chedid, I, Arnon, R, Sela, M. Successful immunization with a totally synthetic diphtheria vaccine. Proc Nat Acad Sci USA 1982; 79: 5042–6.CrossRefGoogle ScholarPubMed
17.Masterton, RG, Tettmar, RE, Pile, RLC, Jones, J, Croft, KF. Immunity to diphtheria in young British adults. J Infect 1976; 15: 2732.CrossRefGoogle Scholar
18.Lau, RCH. Detection of diphtheria toxin antibodies in human sera in New Zealand by ELISA. J Hyg 1986; 96: 415–8.CrossRefGoogle ScholarPubMed
19.Lau, RCH. The national immunization survey: diphtheria, tetanus and pertussis (whooping cough). N Z Med J 1988; 23: 797800.Google Scholar
20.Kjeldsen, K, Simonsen, O, Heron, I. Immunity against diphtheria and tetanus in the age group 30–70 years. Scand J Infect Dis 1988; 20: 177–85.CrossRefGoogle ScholarPubMed
21.Kaczorek, M, Delpeyroux, F, Chenciner, N, Streeck, RE, Murphy, JR, Boquet, P, Tiollais, P. Nucleotide sequence and expression of the diphtheria tox 228 gene in Escherichia coli. Science 1983; 221; 855–8.CrossRefGoogle Scholar
22.Drazin, R, Kandel, J. Collier, RJ. Structure and activity of diphtheria toxin. J Biol Chem 1971; 246: 1504–10.CrossRefGoogle ScholarPubMed
23.Laemmli, UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–5.CrossRefGoogle ScholarPubMed
24.Towbin, H, Staehlin, T, Gordon, J. Electrophoretic transfer from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Nat Acad Sci USA 1979; 76: 4350–4.CrossRefGoogle ScholarPubMed
25.Melville-Smith, M, Balfour, A. Estimation of Corynebacterium diphtheriae antitoxin in human sera: a comparison of an enzyme-linked immunosorbent assay with the toxin neutralization test. J Med Microbiol 1988; 25: 279–83.CrossRefGoogle Scholar
26.Bradford, MMA rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 565–78.CrossRefGoogle ScholarPubMed
27.Seppalä, IJT, Routonen, N, Sarnesto, A, Mattila, PA, Mäkelä, O. The percentages of six immunoglobulin isotypes in human antibodies to tetanus toxoid: Standardization of isotype-specific second antibodies in solid-phase assay. Euro J Immunol 1984; 14: 868–75.CrossRefGoogle ScholarPubMed
28.Kandel, J, Collier, RJ, Chung, DW. Interaction of fragment A from diphtheria toxin with nicotinamide adenine dinucleotide. J Biol Chem 1974; 249: 2088–97.CrossRefGoogle ScholarPubMed
29.Tweten, RK, Barbieri, JT, Collier, RJ. Diphtheria toxin. Effect of substituting aspartic acid for glutamic acid 148 on ADP-ribosyl transferase activity. J Biol Chem 1985; 260: 10392–4.CrossRefGoogle Scholar
30.Delange, RJ, Williams, LC, Collier, RJ. The amino acid sequence of fragment A, an enzymically active fragment of diphtheria toxin. J Biol Chem 1979; 254: 5838–42.CrossRefGoogle Scholar
31.Triebel, F, Autran, B, De Roquefeuil, S, Falmagne, P, Debre, P. Immune response to diphtheria toxin and to different CNBr fragments: evidence for different B and T cell reactivities. Euro J Immunol 1986; 16: 4753.CrossRefGoogle ScholarPubMed