Skip to main content Accessibility help
×
Home

Giardia and Cryptosporidium infections in sheep and goats: a review of the potential for transmission to humans via environmental contamination

  • L. J. ROBERTSON (a1)

Summary

The public health significance of giardiasis and cryptosporidiosis in sheep is currently unclear. Some research suggests that they are probably not an important zoonotic reservoir, whilst other research indicates this potential exists, and some outbreaks have also been associated with infections in sheep. Actions to limit water supply contamination by sheep have sometimes been severe, occasionally creating problems between farming and public health communities. Here our knowledge on these parasites in both sheep and goats is reviewed; although direct evidence of transmission to humans via water supply contamination is limited, the data accrued indicate that this is a real possibility. As cryptosporidiosis in sheep is generally more prevalent than giardiasis, and species/genotypes of Cryptosporidium infections in sheep are likely to be infectious to humans, this parasite may be considered the greater threat. Nevertheless, geographical variation in prevalence and genotypic distribution is extensive and as measures to limit sheep grazing can have a highly negative impact, it is important that cases are judged individually. If water contamination from a particular population of sheep/goats is suspected, then suitable investigations should be instigated, investigating both prevalence and species/genotype, before precautionary measures are imposed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Giardia and Cryptosporidium infections in sheep and goats: a review of the potential for transmission to humans via environmental contamination
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Giardia and Cryptosporidium infections in sheep and goats: a review of the potential for transmission to humans via environmental contamination
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Giardia and Cryptosporidium infections in sheep and goats: a review of the potential for transmission to humans via environmental contamination
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr L. J. Robertson, Parasitology Laboratory, Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, PO Box 8146 Dep., 0033 Oslo, Norway. (Email: Lucy.robertson@veths.no)

References

Hide All
1. Fayer, R. General biology. In: Fayer, R, Xiao, L, eds. Cryptosporidium and Cryptosporidiosis. CRC Press, Boca Raton, FL: Taylor & Francis Group, 2008, pp. 142.
2. Smith, HV, et al. Natural Cryptosporidium hominis infections in Scottish cattle. The Veterinary Record 2005; 156: 710711.
3. Xiao, L, Fayer, R. Molecular characterisation of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission. International Journal for Parasitology 2008; 38: 12391255.
4. Xiao, L, Ryan, UM. Molecular epidemiology. In: Fayer, R, Xiao, L, eds. Cryptosporidium and Cryptosporidiosis. CRC Press, Boca Raton, FL: Taylor & Francis Group, 2008, pp. 119172.
5. Leoni, F, et al. Genetic analysis of Cryptosporidium from 2414 humans with diarrhoea in England between 1985 and 2000. Journal of Medical Microbiology 2006; 55: 703707.
6. Soba, B, et al. Molecular characterisation of Cryptosporidium isolates from humans in Slovenia. Clinical Microbiology and Infection 2006; 12: 918921.
7. Feltus, DC, et al. Evidence supporting zoonotic transmission of Cryptosporidium spp. in Wisconsin. Journal of Clinical Microbiology 2006; 44: 43034308.
8. Ong, CS, et al. Novel Cryptosporidium genotypes in sporadic cryptosporidiosis cases: first report of human infections with a cervine genotype. Emerging Infectious Diseases 2002; 8: 263268.
9. Trotz-Williams, LA, et al. Genotype and subtype analyses of Cryptosporidium isolates from dairy calves and humans in Ontario. Parasitology Research 2006; 99: 346352.
10. Ryan, UM, et al. Sheep may not be an important zoonotic reservoir for Cryptosporidium and Giardia parasites. Applied and Environmental Microbiology 2005; 71: 49924997.
11. Ruiz, A, et al. Occurrence and genotype characterization of Giardia duodenalis in goat kids from the Canary Islands, Spain. Veterinary Parasitology 2008; 154: 137141.
12. Geurden, T, et al. Prevalence and molecular characterisation of Cryptosporidium and Giardia in lambs and goat kids in Belgium. Veterinary Parasitology 2008; 155: 142145.
13. Quílez, J, et al. Cryptosporidium genotypes and subtypes in lambs and goat kids in Spain. Applied and Environmental Microbiology 2008; 74: 60266031.
14. Mueller-Doblies, D, et al. Distribution of Cryptosporidium species in sheep in the UK. Veterinary Parasitology 2008; 154: 214219.
15. The Cryptosporidium (Scottish Water) Directions 2003. (https://www.scotland.gov.uk/Resource/Doc/26487/0013541.pdf). Accessed 11 November 2008.
16. EarthTrends Databases, World Resources Institute. (http://earthtrends.wri.org/text/agriculture-food/variables.html). Accessed 11 November 2008.
17. Ryan, U, et al. Identification of novel Cryptosporidium genotypes from the Czech Republic. Applied and Environmental Microbiology 2003; 69: 43024307.
18. Castro-Hermida, JA, et al. Giardia duodenalis and Cryptosporidium parvum infections in adult goats and their implications for neonatal kids. Veterinary Record 2005; 157: 623627.
19. Delafosse, A, et al. Herd-level risk factors for Cryptosporidium infection in dairy-goat kids in western France. Preventive Veterinary Medicine 2006; 77: 109121.
20. Aloisio, F, et al. Severe weight loss in lambs infected with Giardia duodenalis assemblage B. Veterinary Parasitology 2006; 142: 154158.
21. Giangaspero, A, et al. Prevalence and molecular characterization of Giardia duodenalis from sheep in central Italy. Parasitology Research 2005; 96: 3237.
22. Van der Giessen, JW, et al. Genotyping of Giardia in Dutch patients and animals: a phylogenetic analysis of human and animal isolates. International Journal for Parasitology 2006; 36: 849858.
23. Majewska, AC, et al. Prevalence of Cryptosporidium in sheep and goats bred on five farms in west-central region of Poland. Veterinary Parasitology 2000; 89: 269275.
24. Alves, M, et al. Distribution of Cryptosporidium subtypes in humans and domestic and wild ruminants in Portugal. Parasitology Research 2006; 99: 287292.
25. Castro-Hermida, JA, et al. Prevalence and preliminary genetic analysis of Giardia isolated from adult sheep in Galicia (northwest Spain). Journal of Eukaryotic Microbiology 2006; 53 (Suppl. 1): 7273.
26. Castro-Hermida, JA, et al. Occurrence of Cryptosporidium parvum and Giardia duodenalis in healthy adult domestic ruminants. Parasitology Research 2007; 101: 14431448.
27. Díaz, V, et al. Aspects of animal giardiosis in Granada province (southern Spain). Veterinary Parasitology 1996; 64: 171176.
28. Causapé, AC, et al. Prevalence and analysis of potential risk factors for Cryptosporidium parvum infection in lambs in Zaragoza (northeastern Spain). Veterinary Parasitology 2002; 104: 287298.
29. Taminelli, V, Eckert, J. The frequency and geographic distribution of Giardia infections in ruminants in Switzerland. Schweizer Archiv für Tierheilkunde 1989; 131: 251258.
30. Chalmers, RM, et al. Cryptosporidium in farmed animals: the detection of a novel isolate in sheep. International Journal for Parasitology 2002; 32: 2126.
31. McLauchlin, J, et al. Molecular epidemiological analysis of Cryptosporidium spp. in the United Kingdom: results of genotyping Cryptosporidium spp. in 1,705 fecal samples from humans and 105 fecal samples from livestock animals. Journal of Clinical Microbiology 2000; 38: 39843990.
32. Pritchard, GC, et al. Cryptosporidium parvum infection in orphan lambs on a farm open to the public. Veterinary Record 2007; 161: 1114.
33. Taylor, MA, et al. Giardiasis in lambs at pasture. Veterinary Record 1993; 133: 131133.
34. Bomfim, TC, et al. Natural infection by Giardia sp. and Cryptosporidium sp. in dairy goats, associated with possible risk factors of the studied properties. Veterinary Parasitology 2005; 134: 913.
35. Vieira, LS, et al. Outbreak of cryptosporidiosis in dairy goats in Brazil. Veterinary Record 1997; 140: 427428.
36. Olson, ME, et al. Giardia and Cryptosporidium in Canadian farm animals. Veterinary Parasitology 1997; 68: 375381.
37. Buret, A, et al. Zoonotic potential of giardiasis in domestic ruminants. Journal of Infectious Diseases 1990; 162: 231237.
38. Alonso-Fresán, MU, et al. Prevalence of Cryptosporidium spp. in asymptomatic sheep in family flocks from Mexico State. Journal of Veterinary Medicine, B: Infectious Diseases and Veterinary Public Health 2005; 52: 482483.
39. Adesiyun, AA, et al. A longitudinal study on enteropathogenic infections of livestock in Trinidad. Revista da Sociedade Brasileira de Medicina Tropical 2001; 34: 2935.
40. Kaminjolo, JS, et al. Prevalence of Cryptosporidium oocysts in livestock in Trinidad and Tobago. Veterinary Parasitology 1993; 45: 209213.
41. Santín, M, Trout, JM, Fayer, R. Prevalence and molecular characterization of Cryptosporidium and Giardia species and genotypes in sheep in Maryland. Veterinary Parasitology 2007; 146: 1724.
42. Mahdi, NK, Ali, NH. Cryptosporidiosis among animal handlers and their livestock in Basrah, Iraq. East African Medical Journal 2002; 79: 550553.
43. Nouri, M, Karami, M. Asymptomatic cryptosporidiosis in nomadic shepherds and their sheep. Journal of Infection 1991; 23: 331333.
44. Johnson, EH, et al. Atypical outbreak of caprine cryptosporidiosis in the Sultanate of Oman. Veterinary Record 1999; 145: 521524.
45. Noordeen, F, et al. Prevalence of Cryptosporidium infection in goats in selected locations in three agroclimatic zones of Sri Lanka. Veterinary Parasitology 2000; 93: 95101.
46. Watanabe, Y, Yang, CH, Ooi, HK. Cryptosporidium infection in livestock and first identification of Cryptosporidium parvum genotype in cattle feces in Taiwan. Parasitology Research 2005; 97: 238241.
47. Abd-El-Wahed, MM. Cryptosporidium infection among sheep in Qalubia Governorate, Egypt. Journal of the Egyptian Society of Parasitology 1999; 29: 113118.
48. Goma, FY, et al. The prevalence and molecular characterisation of Cryptosporidium spp. in small ruminants in Zambia. Small Ruminant Research 2007; 72: 7780.
49. Santín, M, Fayer, R. Intragenotypic variations in the Cryptosporidium sp. cervine genotype from sheep with implications for public health. Journal of Parasitology 2007; 93: 668672.
50. Xiao, L, Feng, Y. Zoonotic cryptosporidiosis. FEMS Immunology and Medical Microbiology 2008; 52: 309323.
51. Dawson, A, et al. Farm visits and zoonoses. Communicable Disease Report. CDR Review 1995; 5: R8186.
52. Health Protection Scotland. Weekly report (serial online), 26 April 2005; 39(16) (http://www.show.scot.nhs.uk/scieh/PDF/weekly_report.pdf). Accessed 20 October 2008.
53. Communicable Disease Report Weekly. (http://www.hpa.org.uk/cdr/archives/1994/cdr1694.pdf). 1994; 4: 73. Accessed 11 November 2008.
54. Communicable Disease Report Weekly. (http://www.hpa.org.uk/cdr/archives/back_issues.htm). 2005; 15. Accessed 11 November 2008.
55. Elwin, K, et al. Modification of a rapid method for the identification of gene-specific polymorphisms in Cryptosporidium parvum and its application to clinical and epidemiological investigations. Applied and Environmental Microbiology 2001; 67: 55815584.
56. Hajdu, A, et al. Investigation of Swedish cases reveals an outbreak of cryptosporidiosis at a Norwegian hotel with possible links to in-house water systems. BMC Infectious Diseases 2008; 8: 152.
57. Pollock, KG, et al. Cryptosporidiosis and filtration of water from Loch Lomond, Scotland. Emerging Infectious Diseases 2008; 14: 115120.
58. Duke, LA, et al. A mixed outbreak of Cryptosporidium and Campylobacter infection associated with a private water supply. Epidemiology and Infection 1996; 116: 303308.
59. Communicable Disease Report Weekly. Surveillance of waterborne disease and water quality: January to June 1998 (http://www.hpa.org.uk/cdr/archives/back_issues.htm). 1998; 8: 305306. Accessed 11 November 2008.
60. Communicable Disease Report Weekly. Outbreak of cryptosporidiosis in north west England (http://www.hpa.org.uk/cdr/archives/back_issues.htm). 1999; 20: 175178. Accessed 11 November 2008.
61. Qamruddin, AO, et al. Increased stool sampling during a waterborne outbreak of cryptosporidiosis does not increase the detection of other faecal pathogens. Journal of Clinical Pathology 2002; 55: 271274.
62. Elwin, K, Chalmers, RM. Contemporary identification of previously reported novel Cryptosporidium isolates reveals Cryptosporidium bovis and the cervine genotype in sheep (Ovis aries). Parasitology Research 2008; 102: 11031105.
63. Reilly, WJ, Browning, LM. Zoonoses in Scotland – food, water, or contact? In: Cotruvo, JA, Dufour, A, Rees, G, Bartram, J, Carr, R, Cliver, DO, Craun, GF, Fayer, R, Gannon, VPJ, eds. Waterborne Zoonoses: Identification, Causes and Control. IWA Publishing, London, UK (http://www.who.int/water_sanitation_health/diseases/zoonosessect4.pdf). Accessed 11 November 2008.
64. BBC News Online. Water authority to end sheep farming, 26 October 2001 (http://news.bbc.co.uk/2/low/uk_news/scotland/1622411.stm). Accessed 11 November 2008.
65. Health Protection Agency. Cryptosporidium beaten by collaboration and ‘maternity leave for sheep’, 2005 (http://www.hpa.org.uk/webw/HPAweb&HPAwebStandard/HPAweb_C/1195733756380?p=1192454969657). Accessed 11 November 2008.
66. Edie net news article. Sheep blamed for Manchester Crypto outbreak, 12 May 2000. Faversham house group (http://www.edie.net/news/news_story.asp?id=2714). Accessed 11 November 2008.
67. BBC News Online. Sheep battle over bug at reservoir, 5 September 2000 (http://news.bbc.co.uk/2/hi/uk_news/northern_ireland/910594.stm). Accessed 11 November 2008.

Keywords

Type Description Title
WORD
Supplementary materials

Robertson Supplementary Material
Table.doc

 Word (101 KB)
101 KB

Giardia and Cryptosporidium infections in sheep and goats: a review of the potential for transmission to humans via environmental contamination

  • L. J. ROBERTSON (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed