Skip to main content Accessibility help
×
Home

Giardia and Cryptosporidium antibody prevalence and correlates of exposure among Alaska residents, 2007–2008

  • E. Mosites (a1), K. Miernyk (a1), J.W. Priest (a2), D. Bruden (a1), D. Hurlburt (a1), A. Parkinson (a1), J. Klejka (a3), T. Hennessy (a1) and M.G. Bruce (a1)...

Abstract

Giardia duodenalis and Cryptosporidium spp. are common intestinal protozoa that can cause diarrhoeal disease. Although cases of infection with Giardia and Cryptosporidium have been reported in Alaska, the seroprevalence and correlates of exposure to these parasites have not been characterised. We conducted a seroprevalence survey among 887 residents of Alaska, including sport hunters, wildlife biologists, subsistence bird hunters and their families and non-exposed persons. We tested serum using a multiplex bead assay to evaluate antibodies to the Giardia duodenalis variant-specific surface protein conserved structural regions and to the Cryptosporidium parvum 17- and 27-kDa antigens. Approximately one third of participants in each group had evidence of exposure to Cryptosporidium. Prevalence of Giardia antibody was highest among subsistence hunters and their families (30%), among whom positivity was associated with lack of community access to in-home running water (adjusted prevalence ratio [aPR] 1.15, 95% confidence interval (CI) 1.02–1.28) or collecting rain, ice, or snow to use as drinking water (aPR 1.09, 95% CI 1.01–1.18). Improving in-home water access for entire communities could decrease the risk of exposure to Giardia.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Giardia and Cryptosporidium antibody prevalence and correlates of exposure among Alaska residents, 2007–2008
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Giardia and Cryptosporidium antibody prevalence and correlates of exposure among Alaska residents, 2007–2008
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Giardia and Cryptosporidium antibody prevalence and correlates of exposure among Alaska residents, 2007–2008
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence: Emily Mosites, E-mail: lwx7@cdc.gov

References

Hide All
1.Sow, SO, et al. (2016) The burden of C ryptosporidium diarrheal disease among children <24 months of age in moderate/high mortality regions of sub-Saharan Africa and South Asia, utilizing data from the Global Enteric Multicenter Study (GEMS). PLoS Neglected Tropical Diseases 10, e0004729, Epub 2016/05/25.
2.Pires, SM, et al. (2015) Aetiology-Specific estimates of the global and regional incidence and mortality of diarrhoeal diseases commonly transmitted through food. PLoS ONE 10, e0142927, Epub 2015/12/04.
3.Painter, JE, et al. (2016) Evolving epidemiology of reported cryptosporidiosis cases in the United States, 1995-2012. Epidemiology and Infection 144, 17921802, Epub 2016/04/30.
4.Painter, JE, et al. (2015) Giardiasis surveillance -- United States, 2011–2012. MMWR Supplement 64, 1525, Epub 2015/05/01.
5.Scallan, E, et al. (2011) Foodborne illness acquired in the United States--major pathogens. Emerging Infectious Disease 17, 715, Epub 2011/01/05.
6.2016 Annual (January–December) Infectious Disease Report (2016) State of Alaska department of health and social services.
7.King, DN, et al. (2016) Microbial pathogens in source and treated waters from drinking water treatment plants in the United States and implications for human health. Science of the Total Environment 562, 987995, Epub 2016/06/05.
8.Speich, B, et al. (2016) Effect of sanitation and water treatment on intestinal protozoa infection: a systematic review and meta-analysis. Lancet Infectious Diseases 16, 8799, Epub 2015/09/26.
9.Frost, FJ, et al. (2004) Analysis of serological responses to Cryptosporidium antigen among NHANES III participants. Annals of Epidemiology 14, 473478, Epub 2004/08/18.
10.Becker, DJ, Oloya, J and Ezeamama, AE (2015) Household socioeconomic and demographic correlates of Cryptosporidium seropositivity in the United States. PLoS Neglected Tropical Diseases 9, e0004080, Epub 2015/09/15.
11.Pijnacker, R, et al. (2016) Different risk factors for infection with Giardia lamblia assemblages A and B in children attending day-care centres. European Journal of Clinical Microbiology and Infectious Disease 35, 20052013, Epub 2016/09/08.
12.Minetti, C, et al. (2015) Case-control study of risk factors for sporadic G iardiasis and parasite assemblages in North West England. Journal of Clinical Microbiology 53, 31333140, Epub 2015/07/15.
13.Penn, HJF, Loring, PA and Schnabel, WE (2017) Diagnosing water security in the rural North with an environmental security framework. Journal of Environmental Management 199, 9198, Epub 2017/05/21.
14.Healthy Alaskans (2020) Healthy Alaskans 2020: 25 Leading Health Priorities: State of Alaska; 2016 [cited 2016 12/12]. Available at http://hss.state.ak.us/ha2020/25LHI.htm.
15.United States Census Bureau. Comparative Housing Characteristics 2013. Available at https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_13_1YR_CP04&prodType=table.
16.Bruden, DJ, et al. (2015) Eighteen years of respiratory syncytial virus surveillance: changes in seasonality and hospitalization rates in Southwestern Alaska native children. Pediatric Infectious Disease Journal 34, 945950, Epub 2015/06/13.
17.Reisman, J, et al. (2014) Risk factors for pneumococcal colonization of the Nasopharynx in Alaska native adults and children. Journal of the Pediatric Infectious Disease Society 3, 104111, Epub 2014/06/01.
18.Thomas, TK, et al. (2013) Washeteria closures, infectious disease and community health in rural Alaska: a review of clinical data in Kivalina, Alaska. International Journal of Circumpolar Health 72. Epub 2013/08/30.
19.Bulkow, LR, et al. (2012) Risk factors for hospitalization with lower respiratory tract infections in children in rural Alaska. Pediatrics 129, e12207, Epub 2012/04/18.
20.Wenger, JD, et al. (2010) Invasive pneumococcal disease in Alaskan children: impact of the seven-valent pneumococcal conjugate vaccine and the role of water supply. Pediatric Infectious Disease Journal 29, 251256, Epub 2009/12/03.
21.Thomas, TK, et al. (2016) Impact of providing in-home water service on the rates of infectious diseases: results from four communities in Western Alaska. Journal of Water Health 14, 132141, Epub 2016/02/04.
22.Hughes-Hanks, JM, et al. (2005) Prevalence of Cryptosporidium spp. and Giardia spp. in five marine mammal species. Journal of Parasitology 91, 12251228, Epub 2006/01/20.
23.Hueffer, K, et al. (2011) Serologic surveillance of pathogens in a declining harbor seal (Phoca vitulina) population in Glacier Bay National Park, Alaska, USA and a reference site. Journal of Wildlife Disease 47, 984988, Epub 2011/11/22.
24.Siefker, C, et al. (2002) Molecular characterization of Cryptosporidium sp. isolated from northern Alaskan caribou (Rangifer tarandus). Journal of Parasitology 88, 213216, Epub 2002/06/11.
25.Reed, C, et al. (2014) Characterizing wild bird contact and seropositivity to highly pathogenic avian influenza A (H5N1) virus in Alaskan residents. Influenza and Other Respiratory Viruses 8, 516523, Epub 2014/05/16.
26.Priest, JW, et al. (2010) Multiplex assay detection of immunoglobulin G antibodies that recognize Giardia intestinalis and Cryptosporidium parvum antigens. Clinical and Vaccine Immunology 17, 16951707, Epub 2010/09/30.
27.Moss, DM, et al. (2014) Longitudinal evaluation of enteric protozoa in Haitian children by stool exam and multiplex serologic assay. American Journal of Tropical Medicine and Hygeine 90, 653660, Epub 2014/03/05.
28.Priest, JW, et al. (2001) Enzyme immunoassay detection of antigen-specific immunoglobulin g antibodies in longitudinal serum samples from patients with cryptosporidiosis. Clinical Diagnostics and Laboratory Immunology 8, 415423, Epub 2001/03/10.
29.Benitez, A, et al. (2011) Evaluation of DNA encoding acidic ribosomal protein P2 of Cryptosporidium parvum as a potential vaccine candidate for cryptosporidiosis. Vaccine 29, 92399245, Epub 2011/10/05.
30.Priest, JW, et al. (2010) Cloning and characterization of th eAcidic Ribosomal Protein P2 of Cryposporidium parvum, a New 17-Kilodalton Antigen. Clinical and Vaccine Immunology 17, 954965.
31.2011 Annual (January–December) Infectious Disease Report (2012) State of Alaska division of public health.
32.Guo, F, et al. (2017) Seroprevalence of five parasitic pathogens in pregnant women in ten Caribbean countries. Parasitology Research 116, 347358, Epub 2016/10/26.
33.Cedillo-Rivera, R, et al. (2009) Seroepidemiology of giardiasis in Mexico. American Journal of Tropical Medicine and Hygeine 80, 610, Epub 2009/01/15.
34.Betancourt, WQ and Rose, JB (2004) Drinking water treatment processes for removal of Cryptosporidium and Giardia. Veterinary Parasitolology 126, 219234, Epub 2004/11/30.
35.Roy, SL, et al. (2004) Risk factors for sporadic cryptosporidiosis among immunocompetent persons in the United States from 1999 to 2001. Journal of Clinical Microbiology 42, 29442951, Epub 2004/07/10.
36.Khalakdina, A, et al. (2003) Is drinking water a risk factor for endemic cryptosporidiosis? A case-control study in the immunocompetent general population of the San Francisco Bay Area. BMC Public Health 3, 11, Epub 2003/04/12.
37.Farkas, K, et al. (2015) Serological responses to Cryptosporidium antigens in inhabitants of Hungary using conventionally filtered surface water and riverbank filtered drinking water. Epidemiology and Infection 143, 27432747, Epub 2015/01/21.
38.Isaac-Renton, J, et al. (1999) Epidemic and endemic seroprevalence of antibodies to Cryptosporidium and Giardia in residents of three communities with different drinking water supplies. American Journal of Tropical Medicine and Hygeine 60, 578583, Epub 1999/05/29.
39.Lebbad, M, et al. (2010) From mouse to moose: multilocus genotyping of Giardia isolates from various animal species. Veterinary Parasitology 168, 231239, Epub 2009/12/09.
40.Bryan, HM, et al. (2011) Exposure to infectious agents in dogs in remote coastal British Columbia: possible sentinels of diseases in wildlife and humans. Canadian Journal Veterinary Research 75, 1117, Epub 2011/04/05.
41.Prevalence of Diarrheal Pathogens in Two Anchorage Daycare Centers (1986) State of Alaska division of public health.
42.Nasser, AM, et al. (2012) Prevalence and fate of Giardia cysts in wastewater treatment plants. Journal of Applied Microbiology 113, 477484, Epub 2012/05/09.

Keywords

Giardia and Cryptosporidium antibody prevalence and correlates of exposure among Alaska residents, 2007–2008

  • E. Mosites (a1), K. Miernyk (a1), J.W. Priest (a2), D. Bruden (a1), D. Hurlburt (a1), A. Parkinson (a1), J. Klejka (a3), T. Hennessy (a1) and M.G. Bruce (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed