Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-19T17:36:22.718Z Has data issue: false hasContentIssue false

Genetic diversity among toxigenic and nontoxigenic Vibrio cholerae O1 isolated from the Western Hemisphere

Published online by Cambridge University Press:  15 May 2009

F. Chen
Affiliation:
Laboratory for Microbial and Biochemical Sciences, Georgia State University, Atlanta, Georgia 30303
G. M. Evins
Affiliation:
Enteric Bacteriology Section, Division of Bacterial Diseases, Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia 30333
W. L. Cook
Affiliation:
Laboratory for Microbial and Biochemical Sciences, Georgia State University, Atlanta, Georgia 30303
R. Almeida
Affiliation:
Enteric Bacteriology Section, Division of Bacterial Diseases, Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia 30333
N. Hargrett-Bean
Affiliation:
Statistical Services Activity, Division of Bacterial Diseases, Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia 30333
K. Wachsmuth
Affiliation:
Enteric Bacteriology Section, Division of Bacterial Diseases, Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia 30333
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Multilocus enzyme electrophoresis was used to examine genetic relationships among and between toxigenic and non-toxigenic isolates of Vibrio cholerae O1 obtained from patients and the environment in the US Gulf Coast and surrounding areas. A total of 23 toxigenic and 23 non-toxigenic strains were examined. All the toxigenic and 7 of the non-toxigenic strains had the same alleles at 16 enzyme loci, whereas the balance of the nontoxigenic strains had 9 distinct combinations of alleles. This study suggests that all of the toxigenic strains belong to a single clone, and that while some of the non-toxigenic isolates were related, most were of diverse origin.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

REFERENCES

1.Weissman, JB, Dewitt, WE, Thompson, J, et al. A case of cholera in Texas, 1973. Am J Epidemiol 1975; 100: 487–98.CrossRefGoogle Scholar
2.Blake, PA, Allegra, DT, Snyder, JD, et al. Cholera – A possible endemic focus in the United States. N Engl J Med 1980; 302: 305–9.CrossRefGoogle ScholarPubMed
3.Kelly, MT, Peterson, JW, Sarles, HE Jr, Romanks, M, Martin, D, Hafkin, B. Cholera on the Texas Gulf Coast. JAMA 1982; 247: 1598–9.CrossRefGoogle ScholarPubMed
4.Shandera, WX, Halfkin, B, Martin, DL, et al. Persistance of cholera in the United States. Am J Trop Med Hyg 1983; 32: 812–7.CrossRefGoogle ScholarPubMed
5.Johnston, JM, Martin, DL, Perdue, J. Cholera on a Gulf Coast oil rig. N Engl J Med 1983; 309: 523–6.CrossRefGoogle ScholarPubMed
6.Blake, PA, Wachsmuth, K, Davis, BR, Bopp, CA, Chaiken, BP, Lee, JV. Toxigenic V. cholerae O1 strain from Mexico identical to United States isolates. Lancet 1983; ii: 912.CrossRefGoogle Scholar
7.Lin, FY, Morris, JG Jr, Kaper, JB, et al. Persistence of cholera in the United States: Isolation of Vibrio cholerae O1 from a patient with diarrhea in Maryland. J Clin Microbiol 1986; 23: 624–6.CrossRefGoogle ScholarPubMed
8.Centers for Disease Control. Toxigenic Vibrio cholerae O1 infections – Louisiana and Florida. Morbid Mortal Weekly Rep 1986; 35: 606–7.Google Scholar
9.Centers for Disease Control. Cholera in Louisiana – update. Morbid Mortal Weekly Rep 1989; 35: 687–8.Google Scholar
10.Johnston, JM, McFarland, LM, Bradford, HB, Carrway, C. Isolation of nontoxigenic Vibrio cholerae O1 from a human wound infection. J Clin Microbiol 1983; 17: 918–20.CrossRefGoogle ScholarPubMed
11.Pavia, AT, Campbell, JF, Blake, PA, Smith, JD, McKinley, TW, Martin, DL. Cholera from raw oysters shipped interstate. JAMA 1987; 258: 17.CrossRefGoogle ScholarPubMed
12.Centers for Disease Control. Toxigenic Vibrio cholerae O1 infection acquired in Colorado. Morbid Mortal Weekly Rep 1989; 38: 1920.Google Scholar
13.Barrett, TJ, Blake, PA. Epidemiological usefulness of changes in hemolytic activity of Vibrio cholerae biotype eltor during the seventh pandemic. J Clin Microbiol 1981; 13: 126–9.CrossRefGoogle Scholar
14.Lee, JV, Furniss, AL. The phage-typing of Vibrio cholerae serovar O1. In: Holme, T, Holmgren, J, Merson, MH, Mollby, R, eds. Acute enteric infections in children. Amsterdam: Elsevier/North-Holland Biomedical Press, 1981; 119–22.Google Scholar
15.Kaper, JB, Moseley, L, Falkow, S. Molecular characterization of environmental and nontoxigenic strains of Vibrio cholerae. Infect Immun 1981; 32: 661–7.CrossRefGoogle ScholarPubMed
16.Goldberg, G, Murphy, JR. Molecular epidemiological studies of United States Gulf Coast Vibrio cholerae strains: Integration site of mutator vibriophage VcA-3. Infect Immun 1983; 42: 224–30.CrossRefGoogle ScholarPubMed
17.Cook, WL, Wachsmuth, K, Johnson, SR, Birkness, KA, Samadi, AR. Persistence of plasmids, cholera toxin genes, and prophage DNA in classical Vibrio cholerae O1. Infect Immun 1984; 45: 222–6.CrossRefGoogle ScholarPubMed
18.Kaper, JB, Bradford, HB, Roberts, NC, Falkow, S. Molecular epidemiology of Vibrio cholerae in the U.S. Gulf Coast. J. Clin Microbiol 1982; 16: 129–34.CrossRefGoogle ScholarPubMed
19.Kaper, JB, Nataro, JP, Roberts, NC, Siebeling, RJ, Bradford, HB. Molecular epidemiology of non-O1 Vibrio cholerae and Vibrio mimicus in the U.S. Gulf Coast region. J Clin Microbiol 1986; 23: 652–4.CrossRefGoogle ScholarPubMed
20.Colwell, RR, Seidler, RJ, Raper, J, et al. Occurrence of Vibrio cholerae serotype 01 in Maryland and Louisiana estuaries. Appl Environ Microbiol 1981; 41: 555–8.CrossRefGoogle ScholarPubMed
21.Morris, JG Jr, Picardi, JL, Lieb, S, et al. Isolation of nontoxigenic Vibrio cholerae O group 1 from a patient with severe gastrointestinal disease. J Clin Microbiol 1984; 19: 296–7.CrossRefGoogle ScholarPubMed
22.Morris, JG Jr, Blake, PA. Cholera and other vibrioses in the United States. N Engl J Med 1985; 312: 343–50.CrossRefGoogle ScholarPubMed
23.Depaola, A. Vibrio cholerae in marine foods and environmental waters: A literature review. J Food Sci 1981; 46: 6670.CrossRefGoogle Scholar
24.Batchelor, RA, Wignall, SF. Nontoxigenic O1 Vibrio cholerae in Peru: A report of two cases associated with diarrhea. Diagn Microbiol Infect Dis 1988; 10: 135–8.CrossRefGoogle Scholar
25.Levine, MM, Black, RE, Clements, ML, et al. The pathogenicity of nonenterotoxigenic Vibrio cholerae serogroup O1 biotype eltor isolated from sewage water in Brazil. J Infect Dis 1982; 145: 296–9.CrossRefGoogle Scholar
26.Merson, MH, Martin, WT, Craig, JP, et al. Cholera on Guam, 1974. Epidemiologic findings and isolation of non-toxigenic strains. Am J Epidemiol 1977; 105: 349–61.CrossRefGoogle Scholar
27.Blake, PA. Vibrios on the half shell: What the walrus and the carpenter didn't know. Ann Intern Med 1983; 99: 558–9.CrossRefGoogle ScholarPubMed
28.Ochman, H, Whittam, TS, Caugant, DA, Selander, RK. Enzyme polymorphism and genetic population structure in Escherichia coli and Shigella. J Gen Microbiol 1983; 129: 2715–26.Google Scholar
29.Selander, RK, Caugant, DA, Ochman, H, Musser, JM, Gilmour, MN, Whittam, TS. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 1986; 51: 873–84.CrossRefGoogle ScholarPubMed
30.Desmarchelier, PM, Momen, H, Salles, CA. A zymovar analysis of Vibrio cholerae isolated in Australia. Trans R Soc Trop Med Hyg 1988; 82: 914–7.CrossRefGoogle ScholarPubMed
31.Momen, H, Salles, CA. An electrophoretic analysis variation in the glucose-6-phosphate dehydrogenase and malate dehydrogenase of Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio fluvialis. J Appl Bacterid 1981; 51: 425–32.CrossRefGoogle ScholarPubMed
32.Momen, H, Salles, CA. Enzyme markers for Vibro cholerae: Identification of classical, eltor and environmental strains. Trans R Soc Trop Med Hyg 1985; 79: 773–6.CrossRefGoogle Scholar
33.Salles, CA, da Silva, AR, Momon, H. Enzyme typing and phenetic relationships in Vibrio cholerae. Rev Brazil Genet 1986; 3: 407–10.Google Scholar
34.Alemeida, RJ, Hickman-Brenner, FW, Sowers, EG, Puhr, ND, Farmer, JJ, Wachsmuth, IK. Comparison of a latex agglutination assay and an enzyme-linked immunosorbent assay for detecting cholera toxin. J Clin Microbiol 1990; 28: 128–30.CrossRefGoogle Scholar
35.Woods, TC, Mckinney, RM, Plikaytis, BD, Steigerwalt, AG, Bibb, WF, Brenner, DJ. Multilocus enzyme analysis of Legionella dumoffii. J Clin Microbiol 1988; 26: 799803.CrossRefGoogle ScholarPubMed
36.Harris, H, Hopkinson, DA. Handbook of enzyme electrophoresis in human genetics. Amsterdam: Elsevier/North-Holland Publ Co, 1976.Google Scholar
37.Selander, RK, Mckinney, RM, Whittam, TS, et al. Genetic structure of populations of Legionella pneumophilia. J Bacteriol 1985; 163: 1021–37.CrossRefGoogle Scholar
38.Sneath, PHA, Skoal, RR. Numerical taxonomy. San Francisco: W.H. Freeman & Co., 1973.Google Scholar
39.Wishart, D. CLUSTAN user manual 1, Version 1C, release 2, 3rd ed.Program Library Unit. Edinburgh: Edinburgh University, 1978.Google Scholar
40.Mekalanos, JJ. Cholera toxin: Genetic analysis, regulation and role in pathogenesis. Curr Topics Microbiol Immunol 1985; 118: 97118.Google ScholarPubMed
41.Klontz, KC, Tauxe, RV, Cook, WL, Riley, WH, Wachsmuth, K. Cholera after the consumption of raw oysters. Ann Intern Med 1987; 107: 846–8.CrossRefGoogle ScholarPubMed
42.World Health Organization Scientific Working Group. Cholera and other Vibrio-associated diarrhea. Bull WHO 1980; 58: 353–74.Google Scholar