Skip to main content Accessibility help
×
Home

Genetic characteristics of pneumococcal disease in elderly patients before introducing the pneumococcal conjugate vaccine

  • B. PICHON (a1), H. V. BENNETT (a1), A. EFSTRATIOU (a1), M. P. E. SLACK (a1) and R. C. GEORGE (a1)...

Summary

Streptococcus pneumoniae strains causing invasive pneumococcal disease (IPD) in the elderly population of England and Wales during the winter of 2003/2004 (1 November 2003 to 30 April 2004) were characterized by serotyping and genotyping in order to determine their population structure in the elderly. Serotyping and multilocus sequence typing (MLST) were carried out on 542 invasive isolates referred to the Respiratory and Systemic Infection Laboratory. Pneumococci were distributed among 32 serotypes and 144 MLST sequence types. A high genetic diversity was observed within the major serotypes. Genetic relatedness varied with regard to serotype. Isolates within serotypes 3, 7F and 8 were the most genetically related whereas serotypes 6A and 19F comprised isolates originating from unrelated ancestors. There was indirect evidence that some pneumococci were derived from clones that had undergone capsular switching in the past. Interestingly one case of IPD was caused by a pneumococcus originating from a clone that had undergone capsular switching from serotype 18C, a serotype included in 7-valent pneumococcal conjugate vaccine (PCV) to serotype 1 (serotype not included in PCV) suggesting that virulent clones with the potential ability to evade PCV existed in the pneumococcal population prior to the routine introduction of this vaccine. Isolates from 28 cases of apparent 23-valent pneumococcal polysaccharide vaccine (PPV) failure were included but there was no evidence of the emergence of particular clones associated with vaccine failures. Longitudinal studies based on serotypic and genetic characterization of pneumococci are fundamental to understanding the impact of both PPV and PCV on the genetic structure of pneumococcal populations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Genetic characteristics of pneumococcal disease in elderly patients before introducing the pneumococcal conjugate vaccine
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Genetic characteristics of pneumococcal disease in elderly patients before introducing the pneumococcal conjugate vaccine
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Genetic characteristics of pneumococcal disease in elderly patients before introducing the pneumococcal conjugate vaccine
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr B. Pichon, Respiratory and Systemic Infection Laboratory, Health Protection Agency – Centre for Infections, 61 Colindale Avenue, London NW9 5EQ, UK. (Email: bruno.pichon@hpa.org.uk)

References

Hide All
1. Park, IH, et al. Discovery of a new capsular serotype (6C) within serogroup 6 of Streptococcus pneumoniae. Journal of Clinical Microbiology 2007; 45: 12251233.
2. Ihekweazu, CA, et al. Trends in incidence of pneumococcal disease before introduction of conjugate vaccine: South West England, 1996–2005.Epidemiology and Infection 2008; 136: 10961102.
3. Goldblatt, D, et al. The immunobiology of polysaccharide and conjugate vaccines. In: Siber, GR, Klugman, KP, Mäkelä, PH eds. Pneumococcal Vaccines: the Impact of Conjugate Vaccine, Washington: ASM Press, 2008, 67pp. –82.
4. Conaty, S, et al. The effectiveness of pneumococcal polysaccharide vaccines in adults: a systematic review of observational studies and comparison with results from randomised controlled trials. Vaccine 2004; 22: 32143224.
5. Cornu, C, et al. Efficacy of pneumococcal polysaccharide vaccine in immunocompetent adults: a meta-analysis of randomized trials. Vaccine 2001; 19: 47804790.
6. Melegaro, A, Edmunds, WJ. The 23-valent pneumococcal polysaccharide vaccine. Part II. A cost-effectiveness analysis for invasive disease in the elderly in England and Wales. European Journal of Epidemiology 2004; 19: 365375.
7. Vila-Corcoles, A, et al. Protective effects of the 23-valent pneumococcal polysaccharide vaccine in the elderly population: the EVAN-65 study. Clinical Infectious Diseases 2006; 43: 860868.
8. Enright, MC, Spratt, BG. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology 1998; 144: 30493060.
9. Platt, S, et al. A bioinformatics pipeline for high-throughput microbial multilocus sequence typing (MLST) analyses. Clinical Microbiology and Infection 2006; 12: 11441146.
10. Feil, EJ, et al. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. Journal of Bacteriology 2004; 186: 15181530.
11. Hunter, PR, Gaston, MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. Journal of Clinical Microbiology 1988; 26: 24652466.
12. Feikin, DR, et al. Increased prevalence of pediatric pneumococcal serotypes in elderly adults. Clinical Infectious Diseases 2005; 41: 481487.
13. Moore, MR, et al. Population snapshot of emergent Streptococcus pneumoniae serotype 19A in the United States, 2005. Journal of Infectious Diseases 2008; 197: 10161027.
14. Clarke, SC, et al. Pneumococci causing invasive disease in children prior to the introduction of pneumococcal conjugate vaccine in Scotland. Journal of Medical Microbiology 2006; 55: 10791084.
15. Jefferies, JM, et al. Genetic analysis of diverse disease-causing pneumococci indicates high levels of diversity within serotypes and capsule switching. Journal of Clinical Microbiology 2004; 42: 56815688.
16. Hussain, M, et al. A longitudinal household study of Streptococcus pneumoniae nasopharyngeal carriage in a UK setting. Epidemiology and Infection 2005; 133: 891898.
17. Sleeman, KL, et al. Capsular serotype-specific attack rates and duration of carriage of Streptococcus pneumoniae in a population of children. Journal of Infectious Diseases 2006; 194: 682688.
18. Sandgren, A, et al. Effect of clonal and serotype-specific properties on the invasive capacity of Streptococcus pneumoniae. Journal of Infectious Diseases 2004; 189: 785796.
19. Coffey, TJ, et al. Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Molecular Microbiology 1998; 27: 7383.
20. Brueggemann, AB, et al. Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential. Journal of Infectious Diseases 2003; 187: 14241432.
21. Lexau, CA, et al. Changing epidemiology of invasive pneumococcal disease among older adults in the era of pediatric pneumococcal conjugate vaccine. Journal of the American Medical Association 2005; 294: 20432051.
22. Whitney, CG, et al. Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. New England Journal of Medicine 2003; 348: 17371746.
23. Kaplan, SL, et al. Decrease of invasive pneumococcal infections in children among 8 children's hospitals in the United States after the introduction of the 7-valent pneumococcal conjugate vaccine. Pediatrics 2004; 113: 443449.
24. Whitney, CG, et al. Effectiveness of seven-valent pneumococcal conjugate vaccine against invasive pneumococcal disease: a matched case-control study. Lancet 2006; 368: 14951502.
25. Hicks, LA, et al. Incidence of pneumococcal disease due to non-pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the era of widespread PCV7 vaccination, 1998–2004. Journal of Infectious Diseases 2007; 196: 13461354.
26. Jacobs, MR, et al. Changes in serotypes and antimicrobial susceptibility of invasive Streptococcus pneumoniae strains in Cleveland: a quarter century of experience. Journal of Clinical Microbiology 2008; 46: 982990.
27. Beall, B, et al. Pre- and postvaccination clonal compositions of invasive pneumococcal serotypes for isolates collected in the United States in 1999, 2001, and 2002. Journal of Clinical Microbiology 2006; 44: 9991017.
28. Pai, R, et al. Postvaccine genetic structure of Streptococcus pneumoniae serotype 19A from children in the United States. Journal of Infectious Diseases 2005; 192: 19881995.
29. Pai, R, et al. Clonal association between Streptococcus pneumoniae serotype 23A, circulating within the United States, and an internationally dispersed clone of serotype 23F. Journal of Clinical Microbiology 2005; 43: 54405444.
30. Gonzalez, BE, et al. Streptococcus pneumoniae serogroups 15 and 33: an increasing cause of pneumococcal infections in children in the United States after the introduction of the pneumococcal 7-valent conjugate vaccine. Pediatric Infectious Disease Journal 2006; 25: 301305.
31. Messina, AF, et al. Impact of the pneumococcal conjugate vaccine on serotype distribution and antimicrobial resistance of invasive Streptococcus pneumoniae isolates in Dallas, TX, children from 1999 through 2005. Pediatric Infectious Disease Journal 2007; 26: 461467.
32. Brueggemann, AB, et al. Vaccine escape recombinants emerge after pneumococcal vaccination in the United States. PLoS Pathogens 2007; 3: e168. doi:10.1371/journal.ppat.0030168.
33. Noakes, K, et al. Pneumococcal polysaccharide vaccine uptake in England, 1989–2003, prior to the introduction of a vaccination programme for older adults. Journal of Public Health (Oxford) 2006; 28: 242247.

Keywords

Genetic characteristics of pneumococcal disease in elderly patients before introducing the pneumococcal conjugate vaccine

  • B. PICHON (a1), H. V. BENNETT (a1), A. EFSTRATIOU (a1), M. P. E. SLACK (a1) and R. C. GEORGE (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed