Skip to main content Accessibility help
×
Home

Five-year prospective study of paediatric acute otitis media in Rochester, NY: modelling analysis of the risk of pneumococcal colonization in the nasopharynx and infection

  • V. FRIEDEL (a1), S. ZILORA (a2), D. BOGAARD (a2), J. R. CASEY (a1) and M. E. PICHICHERO (a1)...

Summary

During a 5-year prospective study of nasopharyngeal (NP) colonization and acute otitis media (AOM) infections in children during the 7-valent pneumococcal conjugate vaccine (PCV) era (July 2006–June 2011) we studied risk factors for NP colonization and AOM. NP samples were collected at ages 6, 9, 12, 15, 18, 24, and 30 months during well-child visits. Additionally, NP and middle ear fluid (MEF) samples were collected at onset of every AOM episode. From 1825 visits (n = 464 children), 5301 NP and 570 MEF samples were collected and analysed for potential otopathogens. Daycare attendance, NP colonization by Moraxella catarrhalis, and siblings aged <5 years increased the risk of Streptococcus pneumoniae NP colonization. NP colonization with S. pneumoniae, M. catarrhalis, or Haemophilus influenzae and a family history of OM increased the risk of AOM. Risk factors that increase the risk of pneumococcal AOM will be important to reassess as we move into a new 13-valent PCV era, especially co-colonization with other potential otopathogens.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Five-year prospective study of paediatric acute otitis media in Rochester, NY: modelling analysis of the risk of pneumococcal colonization in the nasopharynx and infection
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Five-year prospective study of paediatric acute otitis media in Rochester, NY: modelling analysis of the risk of pneumococcal colonization in the nasopharynx and infection
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Five-year prospective study of paediatric acute otitis media in Rochester, NY: modelling analysis of the risk of pneumococcal colonization in the nasopharynx and infection
      Available formats
      ×

Copyright

Corresponding author

* Address for correspondence: M. E. Pichichero, MD, Rochester General Hospital Research Institute, Center for Infectious Diseases and Immunology, 1425 Portland Avenue, Rochester, NY 14621, USA. (Email: michael.pichichero@rochestergeneral.org)

References

Hide All
1. Centers for Disease Control and Prevention (CDC). Pneumococcal disease. In: Epidemiology and Prevention of Vaccine-Preventable Diseases: ‘The Pink Book’, 12th edn, 2012, pp. 233248.
2. Casselbrant, M, Mandel, E. Epidemiology. In: Rosenfeld, R, Bluestone, C, eds. Evidence-Based Otitis Media. Hamilton, Ontario: BC Decker, 2003, pp. 147162.
3. Teele, DW, Klein, JO, Rosner, B. Epidemiology of otitis media during the first seven years of life in children in greater Boston: a prospective, cohort study. Journal of Infectious Disease 1989; 160: 8394.
4. Vergison, A. Microbiology of otitis media: a moving target. Vaccine 2008; 26 (Suppl. 7): G510.
5. Chonmaitree, T, et al. Viral upper respiratory tract infection and otitis media complication in young children. Clinical Infectious Disease 2008; 46: 815823.
6. Arola, M, Ziegler, T, Ruuskanen, O. Respiratory virus infection as a cause of prolonged symptoms in acute otitis media. Journal of Pediatrics 1990; 116: 697701.
7. Winther, B, Doyle, WJ, Alper, CM. A high prevalence of new onset otitis media during parent diagnosed common colds. International Journal of Pediatric Otorhinolaryngology 2006; 70: 17251730.
8. Heikkinen, T, Ruuskanen, O. Temporal development of acute otitis media during upper respiratory tract infection. Pediatric Infectious Disease Journal 1994; 13: 659661.
9. Massa, HM, Cripps, AW, Lehmann, D. Otitis media: viruses, bacteria, biofilms and vaccines. Medical Journal of Australia 2009; 191 (9 Suppl.): S4449.
10. Heikkinen, T, Chonmaitree, T. Importance of respiratory viruses in acute otitis media. Clinical Microbiology Review 2003; 16: 230–41.
11. Acuin, J. Chronic suppurative otitis media. Clinical Evidence (Online) 2007; 2007: 0507.
12. Monasta, L, et al. Burden of disease caused by otitis media: Systematic review and global estimates. PLoS One 2012; 7: e36226.
13. Centers for Disease Control and Prevention (CDC). Invasive pneumococcal disease in children 5 years after conjugate vaccine introduction – eight states, 1998–2005. Morbidity and Mortality Weekly Report 2008; 57: 144148.
14. Pai, R, et al. Active Bacterial Core Surveillance Team. Post vaccine genetic structure of streptococcus pneumoniae serotype 19A from children in the United States. Journal of Infectious Disease 2005; 192: 19881995.
15. Pichichero, ME, Casey, JR. Emergence of a multiresistant serotype 19A pneumococcal strain not included in the 7-valent conjugate vaccine as an otopathogen in children. Journal of the American Medical Association 2007; 298: 17721778.
16. Pilishvili, T, et al. Active Bacterial Core Surveillance/Emerging Infections Program Network. Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. Journal of Infectious Disease 2010; 201: 3241.
17. Beall, BW, et al. Shifting genetic structure of invasive serotype 19A pneumococci in the united states. Journal of Infectious Disease 2011; 203: 13601368.
18. Moore, MR, et al. Population snapshot of emergent Streptococcus pneumoniae serotype 19A in the united states, 2005. Journal of Infectious Disease 2008; 197: 10161027.
19. Sharma, D, et al. Pneumococcal carriage and invasive disease in children before introduction of the 13-valent conjugate vaccine: Comparison with the era before 7-valent conjugate vaccine. Pediatric Infectious Disease Journal 2013; 32: e4553.
20. Cohen, R, et al. Risk factors for serotype 19A carriage after introduction of 7-valent pneumococcal vaccination. BMC Infectious Disease 2011; 11: 95.
21. Pichichero, ME, Casey, JR. Evolving microbiology and molecular epidemiology of acute otitis media in the pneumococcal conjugate vaccine era. Pediatric Infectious Disease Journal 2007; 26 (10 Suppl.): S1216.
22. Centers for Disease Control and Prevention (CDC). Licensure of a 13-valent pneumococcal conjugate vaccine (PCV13) and recommendations for use among children – advisory committee on immunization practices (ACIP), 2010. Morbidity and Mortality Weekly Report 2010; 59: 258261.
23. Shapiro, ED. Prevention of pneumococcal infection with vaccines: An evolving story. Journal of the American Medical Association 2012; 307: 847849.
24. Kaur, R, et al. Simultaneous assay for four bacterial species including alloiococcus otitidis using multiplex-PCR in children with culture negative acute otitis media. Pediatric Infectious Disease Journal 2010; 29: 741745.
25. Office of the Federal Register NAaRA. Code of Federal Regulations, Title 21, Part 11.1., 2012.
26. Casey, JR, Adlowitz, DG, Pichichero, ME. New patterns in the otopathogens causing acute otitis media six to eight years after introduction of pneumococcal conjugate vaccine. Pediatric Infectious Disease Journal 2010; 29: 304309.
27. Pelton, SI, et al. Emergence of 19A as virulent and multidrug resistant pneumococcus in Massachusetts following universal immunization of infants with pneumococcal conjugate vaccine. Pediatric Infectious Disease Journal 2007; 26: 468472.
28. Hanage, WP, et al. Carried pneumococci in Massachusetts children: The contribution of clonal expansion and serotype switching. Pediatric Infectious Disease Journal 2011; 30: 302308.
29. Homoe, P. Otitis media in Greenland. Studies on historical, epidemiological, microbiological, and immunological aspects. International Journal of Circumpolar Health 2001; 60 (Suppl. 2): 154.
30. Casselbrant, ML, Mandel, EM. The genetics of otitis media. Current Allergy Asthma Report 2001; 1: 353357.
31. Sabirov, A, et al. Breast-feeding is associated with a reduced frequency of acute otitis media and high serum antibody levels against NTHi and outer membrane protein vaccine antigen candidate P6. Pediatric Research 2009; 66: 565570.
32. Ruohola, A, et al. Bacterial and viral interactions within the nasopharynx contribute to the risk of acute otitis media. Journal of Infection 2013; 66: 247254.
33. Pettigrew, MM, et al. Upper respiratory tract microbial communities, acute otitis media pathogens, and antibiotic use in healthy and sick children. Applied and Environmental Microbiology 2012; 78: 62626270.
34. Friedel, V, et al. Impact of respiratory viral infections on alpha-hemolytic streptococci and otopathogens in the nasopharynx of young children. Pediatric Infectious Disease Journal 2013; 32: 2731.
35. Tano, K, et al. Bacterial interference between pathogens in otitis media and alpha-haemolytic streptococci analysed in an in vitro model. Acta Otolaryngologica 2002; 122: 7885.
36. Millar, EV, et al. Nasopharyngeal carriage of streptococcus pneumoniae in navajo and white mountain apache children before the introduction of pneumococcal conjugate vaccine. Pediatric Infectious Disease Journal 2009; 28: 711716.
37. Jacoby, P, et al. ; Kalgoorlie Otitis Media Research Project Team. Modelling the co-occurrence of streptococcus pneumoniae with other bacterial and viral pathogens in the upper respiratory tract. Vaccine 2007; 25: 24582464.
38. Xu, Q, et al. Nasopharyngeal bacterial interactions in children. Emerging Infectious Diseases 2012; 18: 17381745.
39. Wroe, PC, et al. Pneumococcal carriage and antibiotic resistance in young children before 13-valent conjugate vaccine. Pediatric Infectious Disease Journal 2012; 31: 249254.

Keywords

Five-year prospective study of paediatric acute otitis media in Rochester, NY: modelling analysis of the risk of pneumococcal colonization in the nasopharynx and infection

  • V. FRIEDEL (a1), S. ZILORA (a2), D. BOGAARD (a2), J. R. CASEY (a1) and M. E. PICHICHERO (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed