Skip to main content Accessibility help
×
Home

Evolving epidemiology of reported cryptosporidiosis cases in the United States, 1995–2012

  • J. E. PAINTER (a1), J. W. GARGANO (a2), J. S. YODER (a2), S. A. COLLIER (a2) and M. C. HLAVSA (a2)...

Summary

Cryptosporidium is the leading aetiology of waterborne disease outbreaks in the United States. This report briefly describes the temporal and geographical distribution of US cryptosporidiosis cases and presents analyses of cryptosporidiosis case data reported in the United States for 1995–2012. The Cochran–Armitage test was used to assess changes in the proportions of cases by case status (confirmed vs. non-confirmed), sex, race, and ethnicity over the study period. Negative binomial regression models were used to estimate rate ratios (RR) and 95% confidence intervals (CI) for comparing rates across three time periods (1995–2004, 2005–2008, 2009–2012). The proportion of confirmed cases significantly decreased (P < 0·0001), and a crossover from male to female predominance in case-patients occurred (P < 0·0001). Overall, compared to 1995–2004, rates were higher in 2005–2008 (RR 2·92, 95% CI 2·08–4·09) and 2009–2012 (RR 2·66, 95% CI 1·90–3·73). However, rate changes from 2005–2008 to 2009–2012 varied by age group (P interaction < 0·0001): 0–14 years (RR 0·55, 95% CI 0·42–0·71), 15–44 years (RR 0·99, 95% CI 0·82–1·19), 45–64 years (RR 1·47, 95% CI 1·21–1·79) and ⩾65 years (RR 2·18, 95% CI 1·46–3·25). The evolving epidemiology of cryptosporidiosis necessitates further identification of risk factors in population subgroups. Adding systematic molecular typing of Cryptosporidium specimens to US national cryptosporidiosis surveillance would help further identify risk factors and markedly expand understanding of cryptosporidiosis epidemiology in the United States.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Evolving epidemiology of reported cryptosporidiosis cases in the United States, 1995–2012
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Evolving epidemiology of reported cryptosporidiosis cases in the United States, 1995–2012
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Evolving epidemiology of reported cryptosporidiosis cases in the United States, 1995–2012
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: J. E. Painter, PhD, MPH, Department of Global and Community Health, George Mason University, 4400 University Drive, Robinson Hall B432, Fairfax, VA 22030, USA. (Email: jpainte6@gmu.edu)

References

Hide All
1. Warren, C, Guerrant, R. Clinical disease and pathology. In: Fayer, R, Xiao, L, eds. Cryptosporidium and Cryptosporidiosis, 2nd edn. Boca Raton, FL: CDC Press, 2008, pp. 235254.
2. U.S. Food and Drug Administration. Alinia (nitazoxanide) label approved 21 July 2004.
3. U.S. Food and Drug Administration. Alinia (nitazoxanide) label approved 16 June 2005.
4. Painter, JE, et al. Cryptosporidiosis surveillance – United States, 2011–2012. Morbidity and Mortality Weekly Report. Surveillance Summaries 2015; 64: 114.
5. Scallan, E, et al. Foodborne illness acquired in the United States – major pathogens. Emerging Infectious Diseases 2011; 17: 715.
6. D'Antonio, RG, et al. A waterborne outbreak of cryptosporidiosis in normal hosts. Annals of Internal Medicine 1985; 103: 886888.
7. Mac Kenzie, WR, et al. A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. New England Journal of Medicine 1994; 331: 161167.
8. U.S. Centers for Disease Control and Prevention. Cryptosporidiosis (Cryptosporidium) 1995 case definition. 1995.
9. Hlavsa, MC, et al. Outbreaks of illness associated with recreational water – United States, 2011–2012. Morbidity and Mortality Weekly Report 2015; 64: 668672.
10. Hlavsa, MC, et al. Recreational water-associated disease outbreaks – United States, 2009–2010. Morbidity and Mortality Weekly Report 2014; 63: 610.
11. Sorvillo, FJ, et al. Swimming-associated cryptosporidiosis. American Journal of Public Health 1992; 82: 742744.
12. Yoder, JS, et al. Surveillance for waterborne disease and outbreaks associated with recreational water use and other aquatic facility-associated health events – United States, 2005–2006. Morbidity and Mortality Weekly Report Surveillance summaries 2008; 57: 129.
13. U.S. Centers for Disease Control and Prevention. Communitywide cryptosporidiosis outbreak – Utah, 2007. Morbidity and Mortality Weekly Report 2008; 57: 989993.
14. Cantey, PT, et al. Outbreak of cryptosporidiosis associated with a man-made chlorinated lake – Tarrant County, Texas, 2008. Journal of Environmental Health 2012; 75: 1419.
15. Chappell, CL, et al. Cryptosporidium hominis: experimental challenge of healthy adults. American Journal of Tropical Medicine and Hygiene 2006; 75: 851857.
16. Okhuysen, PC, et al. Virulence of three distinct Cryptosporidium parvum isolates for healthy adults. Journal of Infectious Diseases 1999; 180: 12751281.
17. Shields, JM, et al. Inactivation of Cryptosporidium parvum under chlorinated recreational water conditions. Journal of Water and Health 2008; 6: 513520.
18. Robertson, LJ, Chalmers, RM. Foodborne cryptosporidiosis: is there really more in Nordic countries? Trends in Parasitology 2013; 29: 39.
19. Painter, JA, et al. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerging Infectious Diseases 2013; 19: 407415.
20. Harper, CM, et al. Outbreak of Cryptosporidium linked to drinking unpasteurised milk. Communicable Diseases Intelligence Quarterly Report 2002; 26: 449450.
21. Rosenthal, M, et al. Notes from the field: cryptosporidiosis associated with consumption of unpasteurized goat milk – Idaho, 2014. Morbidity and Mortality Weekly Report 2015; 64: 194195.
22. Blackburn, BG, et al. Cryptosporidiosis associated with ozonated apple cider. Emerging Infectious Diseases 2006; 12: 684686.
23. Millard, PS, et al. An outbreak of cryptosporidiosis from fresh-pressed apple cider. Journal of the American Medical Association 1994; 272: 15921596.
24. Cordell, RL, Addiss, DG. Cryptosporidiosis in child care settings: a review of the literature and recommendations for prevention and control. Pediatric Infectious Diseases Journal 1994; 13: 310317.
25. Turabelidze, G, et al. Communitywide outbreak of cryptosporidiosis in rural Missouri associated with attendance at child care centers. Archives of Pediatrics and Adolescent Medicine 2007; 161: 878883.
26. U.S. Centers for Disease Control and Prevention. Outbreak of cryptosporidiosis associated with a firefighting response – Indiana and Michigan, June 2011. Morbidity and Mortality Weekly Report 2012; 61: 153156.
27. Gormley, FJ, et al. Zoonotic cryptosporidiosis from petting farms, England and Wales, 1992–2009. Emerging Infectious Diseases 2011; 17: 151152.
28. Webb, LM, et al. Outbreak of cryptosporidiosis among responders to a rollover of a truck carrying calves – Kansas, April 2013. Morbidity and Mortality Weekly Report 2014; 63: 11851188.
29. Yoder, JS, Beach, MJ. Cryptosporidiosis surveillance – United States, 2003–2005. Morbidity and Mortality Weekly Report. Surveillance Summaries 2007; 56: 110.
30. Yoder, JS, Harral, C, Beach, MJ. Cryptosporidiosis surveillance – United States, 2006–2008. Morbidity and Mortality Weekly Report. Surveillance Summaries 2010; 59: 114.
31. Yoder, JS, et al. Cryptosporidiosis surveillance – United States, 2009–2010. Morbidity and Mortality Weekly Report. Surveillance Summaries 2012; 61: 112.
32. Dietz, VJ, Roberts, JM. National surveillance for infection with Cryptosporidium parvum, 1995–1998: what have we learned? Public Health Reports 2000; 115: 358363.
33. Hlavsa, MC, Watson, JC, Beach, MJ. Cryptosporidiosis surveillance – United States 1999–2002. Morbidity and Mortality Weekly Report. Surveillance Summaries 2005; 54: 18.
34. Checkley, W, et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium . Lancet Infectious Diseases 2015; 15: 8594.
35. U.S. Census Bureau. U.S. Census Bureau, Statistical Abstract of the United States: 2012. 2012.
36. U.S. Census Bureau. Annual estimates of the population for the United States, Regions, States, and Puerto Rico: 1 April 2010 to 1 July 2012. 2012.
37. Armitage, P. Tests for linear trends in proportions and frequencies. Biometrics 1955; 11: 375386.
38. Cochran, WG. Some methods for strengthening the common χ 2 tests. Biometrics 1954; 10: 417451.
39. Jagai, JS, et al. Patterns of protozoan infections: spatiotemporal associations with cattle density. EcoHealth 2010; 7: 3346.
40. Xiao, L, et al. Distribution of Cryptosporidium parvum subtypes in calves in eastern United States. Parasitology Research 2007; 100: 701706.
41. U.S. Centers for Disease Control and Prevention. Cryptosporidiosis (Cryptosporidium) 1998 case definition. 1998.
42. U.S. Centers for Disease Control and Prevention. Cryptosporidiosis (Cryptosporidium) 2009 case definition. 2009.
43. U.S. Centers for Disease Control and Prevention. CDC. Cryptosporidiosis (Cryptosporidium) 2011 case definition. 2011.
44. U.S. Centers for Disease Control and Prevention. Cryptosporidiosis (Cryptosporidium) 2012 case definition. 2012.
45. Garcia, LS, Shimizu, RY. Detection of Giardia lamblia and Cryptosporidium parvum antigens in human fecal specimens using the ColorPAC combination rapid solid-phase qualitative immunochromatographic assay. Journal of Clinical Microbiology 2000; 38: 12671268.
46. Garcia, LS, et al. Commercial assay for detection of Giardia lamblia and Cryptosporidium parvum antigens in human fecal specimens by rapid solid-phase qualitative immunochromatography. Journal of Clinical Microbiology 2003; 41: 209212.
47. Johnston, SP, et al. Evaluation of three commercial assays for detection of Giardia and Cryptosporidium organisms in fecal specimens. Journal of Clinical Microbiology 2003; 41: 623626.
48. Robinson, TJ, et al. Evaluation of the positive predictive value of rapid assays used by clinical laboratories in Minnesota for the diagnosis of cryptosporidiosis. Clinical Infectious Diseases 2010; 50: e5355.
49. Moore, RD, Chaisson, RE. Natural history of opportunistic disease in an HIV-infected urban clinical cohort. Annals of Internal Medicine 1996; 124: 633642.
50. Brady, MT, et al. Declines in mortality rates and changes in causes of death in HIV-1-infected children during the HAART era. Journal of Acquired Immune Deficiency Syndromes 2010; 53: 8694.
51. Kaplan, JE, et al. Epidemiology of human immunodeficiency virus-associated opportunistic infections in the United States in the era of highly active antiretroviral therapy. Clinical Infectious Diseases 2000; 30 (Suppl. 1): S514.
52. Roy, SL, et al. Risk factors for sporadic cryptosporidiosis among immunocompetent persons in the United States from 1999 to 2001. Journal of Clinical Microbiology 2004; 42: 29442951.
53. Hunter, PR, et al. Sporadic cryptosporidiosis case-control study with genotyping. Emerging Infectious Diseases 2004; 10: 12411249.
54. Robertson, B, et al. Case-control studies of sporadic cryptosporidiosis in Melbourne and Adelaide, Australia. Epidemiology and Infection 2002; 128: 419431.
55. Xiao, L, et al. Cryptosporidium taxonomy: recent advances and implications for public health. Clinical Microbiology Reviews 2004; 17: 7297.
56. Chalmers, RM, et al. Epidemiology of anthroponotic and zoonotic human cryptosporidiosis in England and Wales, 2004–2006. Epidemiology and Infection 2011; 139: 700712.
57. Cama, VA, et al. Cryptosporidium species and subtypes and clinical manifestations in children, Peru. Emerging Infectious Diseases 2008; 14: 15671574.
58. Xiao, L, et al. Subtype analysis of Cryptosporidium specimens from sporadic cases in Colorado, Idaho, New Mexico, and Iowa in 2007: widespread occurrence of one Cryptosporidium hominis subtype and case history of an infection with the Cryptosporidium horse genotype. Journal of Clinical Microbiology 2009; 47: 30173020.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed