Skip to main content Accessibility help
×
Home

Epidemiology and whole genome sequencing of an ongoing point-source Salmonella Agona outbreak associated with sushi consumption in western Sydney, Australia 2015

  • C. K. THOMPSON (a1) (a2), Q. WANG (a3) (a4) (a5), S. K. BAG (a6), N. FRANKLIN (a7), C. T. SHADBOLT (a8), P. HOWARD (a5), E. J. FEARNLEY (a2), H. E. QUINN (a1) (a9), V. SINTCHENKO (a3) (a4) (a5) and K. G. HOPE (a7)...

Summary

During May 2015, an increase in Salmonella Agona cases was reported from western Sydney, Australia. We examine the public health actions used to investigate and control this increase. A descriptive case-series investigation was conducted. Six outbreak cases were identified; all had consumed cooked tuna sushi rolls purchased within a western Sydney shopping complex. Onset of illness for outbreak cases occurred between 7 April and 24 May 2015. Salmonella was isolated from food samples collected from the implicated premise and a prohibition order issued. No further cases were identified following this action. Whole genome sequence (WGS) analysis was performed on isolates recovered during this investigation, with additional S. Agona isolates from sporadic-clinical cases and routine food sampling in New South Wales, January to July 2015. Clinical isolates of outbreak cases were indistinguishable from food isolates collected from the implicated sushi outlet. Five additional clinical isolates not originally considered to be linked to the outbreak were genomically similar to outbreak isolates, indicating the point-source contamination may have started before routine surveillance identified an increase. This investigation demonstrated the value of genomics-guided public health action, where near real-time WGS enhanced the resolution of the epidemiological investigation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Epidemiology and whole genome sequencing of an ongoing point-source Salmonella Agona outbreak associated with sushi consumption in western Sydney, Australia 2015
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Epidemiology and whole genome sequencing of an ongoing point-source Salmonella Agona outbreak associated with sushi consumption in western Sydney, Australia 2015
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Epidemiology and whole genome sequencing of an ongoing point-source Salmonella Agona outbreak associated with sushi consumption in western Sydney, Australia 2015
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: C. Thompson, National Centre for Immunisation Research and Surveillance, Sydney Children's Hospital Network, Locked Bag 4001, Westmead, New South Wales, Australia. (Email: Craig.Thompson5@sa.gov.au)

References

Hide All
1. Fearnley, E, et al. Salmonella in chicken meat, eggs and humans; Adelaide, South Australia, 2008. International Journal of Food Microbiology 2011; 146: 219227.
2. Ashbolt, R, Kirk, M. Salmonella Mississippi infections in Tasmania: the role of native Australian animals and untreated drinking water. Epidemiology and Infection 2006; 134: 12571265.
3. Heyman, D. Control of Communicable Diseases Manual, 20th edn. Washington, DC: American Public Health Association Press, 2015.
4. Hendriksen, RS, et al. Global monitoring of Salmonella serovar distribution from the World Health Organization global foodborne infections network country data bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathogens and Disease 2011; 8: 887900.
5. Dione, MM, Geerts, S, Antonio, M. Characterisation of novel strains of multiply antibiotic-resistant Salmonella recovered from poultry in Southern Senegal. The Journal of Infection in Developing Countries 2011; 6: 436442.
6. Haley, C, et al. Salmonella prevalence and antimicrobial susceptibility from the national animal health monitoring system swine 2000 and 2006 studies. Journal of Food Protection 2012; 75: 428436.
7. Quiroz-Santiago, C, et al. Prevalence of Salmonella in vegetables from Mexico. Journal of Food Protection 2009; 72: 12791282.
8. Nicolay, N, et al. Salmonella enterica serovar Agona European outbreak associated with a food company. Epidemiology and Infection 2011; 139: 12721280.
9. Anderson, P, et al. Molecular analysis of Salmonella serotypes at different stages of commercial turkey processing. Poultry Science 2010; 89: 20302037.
10. Brouard, C, et al. Two consecutive large outbreaks of Salmonella enterica serotype Agona infections in infants linked to the consumption of powdered infant formula. The Pediatric Infectious Disease Journal 2007; 26: 148152.
11. Diez-Garcia, M, Capita, R, Alonso-Calleja, C. Influence of serotype on the growth kinetics and the ability to form biofilms of Salmonella isolates from poultry. Food Microbiology 2012; 31: 173180.
12. The National Enteric Pathogens Surveillance System (NEPSS). Communicable diseases surveillance – Additional reports. Communicable Diseases Intelligence Quarterly Report 2006; 30: 486494.
13. Threlfall, EJ, et al. Application of pulsed-field gel electrophoresis to an international outbreak of Salmonella Agona . Emerging Infectious Diseases 1996; 2: 130.
14. Killalea, D, et al. International epidemiological and microbiological study of outbreak of Salmonella Agona infection from a ready to eat savoury snack—I: England and Wales and the United States. British Medical Journal 1996; 313: 11051107.
15. Centers for Disease Control Prevention. Multistate outbreak of Salmonella serotype Agona infections linked to toasted oats cereal-United States, April-May, 1998. MMWR Morbidity and Mortality Weekly Report 1998; 47: 462.
16. Russo, ET, et al. A recurrent, multistate outbreak of Salmonella serotype Agona infections associated with dry, unsweetened cereal consumption, United States, 20083. Journal of Food Protection 2013; 76: 227230.
17. Hoffmann, M, et al. Complete genome sequence of Salmonella enterica subsp. enterica serovar Agona 460004 2–1, associated with a multistate outbreak in the United States. Genome Announcements 2015; 3: e0069015.
18. Shohat, T, et al. International epidemiological and microbiological study of outbreak of Salmonella Agona infection from a ready to eat savoury snack—II: Israel. British Medical Journal 1996; 313: 11071109.
19. Lindqvist, N, Siitonen, A, Pelkonen, S. Molecular follow-up of Salmonella enterica subsp. enterica serovar Agona infection in cattle and humans. Journal of Clinical Microbiology 2002; 40: 36483653.
20. Rabsch, W, et al. Molecular epidemiology of Salmonella enterica serovar Agona: characterization of a diffuse outbreak caused by aniseed-fennel-caraway infusion. Epidemiology and Infection 2005; 133: 837844.
21. Merritt, TD, Herlihy, C. Salmonella outbreak associated with chicks and ducklings at childcare centres. The Medical Journal of Australia 2003; 179: 6364.
22. Carli, KT, Eyigor, A, Caner, V. Prevalence of Salmonella serovars in chickens in Turkey. Journal of Food Protection 2001; 64: 18321835.
23. Cardinale, E, et al. Risk factors for Salmonella enterica subsp. enterica infection in Senegalese broiler-chicken flocks. Preventive Veterinary Medicine 2004; 63: 151161.
24. Sorensen, O, et al. Salmonella spp. shedding by Alberta beef cattle and the detection of Salmonella spp. in ground beef. Journal of Food Protection 2002; 65: 484491.
25. Clark, GM, Gangarosa, AKJ, Thompson, M. Epidemiology of an international outbreak of Salmonella Agona. The Lancet 1973; 302: 490493.
26. Sintchenko, V, Holmes, EC. The role of pathogen genomics in assessing disease transmission. BMJ 2015; 350: h1314.
27. Octavia, S, et al. Delineating community outbreaks of Salmonella enterica serovar Typhimurium by use of whole-genome sequencing: insights into genomic variability within an outbreak. Journal of Clinical Microbiology 2015; 53: 10631071.
28. Roetzer, A, et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Medicine 2013; 10: e1001387.
29. Leekitcharoenphon, P, et al. Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica. PLoS ONE 2014; 9: e87991.
30. Moran-Gilad, J, et al. Proficiency testing for bacterial whole genome sequencing: an end-user survey of current capabilities, requirements and priorities. BMC Infectious Diseases 2015; 15: 110.
31. Hatherell, H-A, et al. Interpreting whole genome sequencing for investigating tuberculosis transmission: a systematic review. BMC Medicine 2016; 14: 1.
32. Communicable Diseases Network Australia (CDNA)- Australian National Notifiable Diseases and Case Definitions (http://www.health.gov.au/internet/main/publishing.nsf/Content/cdna-casedefinitions.htm). Accessed October 2015.
33. Merritt, T, Unicomb, L. A review of Salmonella surveillance in New South Wales, 1998–2000. New South Wales Public Health Bulletin 2004; 15: 178181.
34. Tamura, K, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 2013; 30: 27252729.
35. Inns, T, et al. A multi-country Salmonella Enteritidis phage type 14b outbreak associated with eggs from a German producer: ‘near real-time’ application of whole genome sequencing and food chain investigations, United Kingdom, May to September 2014. Euro Surveillance 2015; 20: 21098.
36. Steenackers, H, et al. Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Research International 2012; 45: 502531.
37. Bavishi, C, Dupont, H. Systematic review: the use of proton pump inhibitors and increased susceptibility to enteric infection. Alimentary Pharmacology and Therapeutics 2011; 34: 12691281.
38. Köser, CU, et al. Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathogens 2012; 8: e1002824.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed