Skip to main content Accessibility help
×
Home

Epidemiology and risk factors for faecal extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) carriage derived from residents of seven nursing homes in western Shanghai, China

  • S.-Y. ZHAO (a1), J. ZHANG (a2), Y.-L. ZHANG (a3), Y.-C. WANG (a4), S.-Z. XIAO (a1), F.-F. GU (a1), X.-K. GUO (a4), Y.-X. NI (a1) and L.-Z. HAN (a1)...

Summary

Nursing homes (NHs) have been implicated as significant reservoirs of antibiotic-resistant organisms causing severe infectious disease. We investigated the prevalence and molecular epidemiology of, and risk factors for, faecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E). A multicentre cross-sectional study was conducted in seven NHs in Shanghai between March 2014 and May 2014. Antimicrobial susceptibility testing and polymerase chain reaction were used to detect genes coding for ESBLs and carbapenemases. NH records at individual-resident level and facility level were examined for potential risk factors. Four hundred and fifty-seven Enterobacteriaceae isolates were collected of which 183 (46·92%) were colonized by ESBL-E. CTX-M enzymes (198/200, 99%) predominated, with CTX-M-14 (84/200, 42%) the most common types. Two carbapenemase producers harboured blaKPC-2. Resistance rates to carbapenems, TZP, AK, FOS, CL and TGC were low. History of invasive procedures [odds ratio (OR) 2·384, 95% confidence interval (CI) 1·318–4·310, P = 0·004], narrow-spectrum cephalosporins (OR 1·635, 95% CI 1·045–2·558, P = 0·031) and broad-spectrum cephalosporins (OR 3·276, 95% CI 1·278–8·398, P = 0·014) were independently associated with ESBL-E carriage. In conclusion, NH residents have a very high prevalence of faecal carriage of ESBL-E. Continuous and active surveillance is important, as are prudent infection control measures and antibiotic use to prevent and control the spread of these antibiotic-resistant strains.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Epidemiology and risk factors for faecal extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) carriage derived from residents of seven nursing homes in western Shanghai, China
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Epidemiology and risk factors for faecal extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) carriage derived from residents of seven nursing homes in western Shanghai, China
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Epidemiology and risk factors for faecal extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) carriage derived from residents of seven nursing homes in western Shanghai, China
      Available formats
      ×

Copyright

Corresponding author

* Author for correspondence: Dr L.-Z. Han, Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, China. (Email: 13916291150@163.com)

References

Hide All
1. Smith, PW, Rusnak, PG. Infection prevention and control in the long-term-care facility. SHEA LongTerm-Care Committee and APIC Guidelines Committee. Infection Control and Hospital Epidemiology 1997; 18: 831849.
2. Yoshikawa, TT. Antimicrobial resistance and aging: beginning of the end of the antibiotic era? Journal of the American Geriatrics Society 2002; 50: S2262299.
3. Fisch, J, et al. New acquisition of antibiotic-resistant organisms in skilled nursing facilities. Journal of Clinical Microbiology 2012; 50: 16981703.
4. O'Fallon, E, Gautam, S, D'Agata, EMC. Colonization with multidrug-resistant gram-negative bacteria: prolonged duration and frequent cocolonization. Clinical Infectious Diseases 2009; 48: 13751381.
5. Van der Donk, CF, et al. Prevalence and spread of multidrug resistant Eshherichia coli isolates among nursing home residents in the southern part of the Netherland. Journal of the American Medical Directors Association 2013; 14: 199203.
6. Loeb, MB, et al. Risk factors for resistance to antimicrobial agents among nursing home residents. American Journal of Epidemiology 2003; 157: 4047.
7. Donskey, CJ, et al. Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. New England Journal of Medicine 2000; 343: 19251932.
8. Leistevuo, T, et al. Problem of antimicrobial resistance of faecal aerobic gram-negative bacilli in the elderly. Antimicrobial Agents and Chemotherapy 1996; 40: 23992403.
9. Salyers, AA, Amabile-Cuevas, CF. Why are antibiotic resistance genes so resistant to elimination? Antimicrobial Agents and Chemotherapy 1997; 41: 23212325.
10. Bonomo, RA. Multiple antibiotic-resistant bacteria in long-termcare facilities: an emerging problem in the practice of infectious diseases. Clinical Infectious Diseases 2000; 31: 14141422.
11. Juthani-Mehta, M, et al. Clinical features to identify urinary tract infection in nursing home residents: a cohort study. Journal of the American Geriatrics Society 2009; 57: 963970.
12. Chan, TC, et al. Is nursing home residence an independent risk factor of mortality in Chinese older adults? Journal of the American Geriatrics Society 2013; 61: 14301432.
13. Shanghai Civil Affairs Bureau. Statistical information on the aged population in Shanghai. 2010 (http://www.shmzj.gov.cn/gb/shmzj/node8/node15/node58/node72/node99/u1ai29584.html). Accessed 6 Jun 2015.
14. Putuo Civil Affairs Bureau. Putuo nursing home list. (http://www.shmzj.gov.cn/gb/mzptq/bmfw/node28/userobject1ai247.html). Accessed 6 Jun 2015.
15. Lo, WU, et al. faecal carriage of CTXM type extended-spectrum beta-lactamase-producing organisms by children and their household contacts. Journal of Infection 2010; 60: 286292.
16. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 24th Informational Supplement, M100-S24. Wayne, PA: CLSI, 2014.
17. Jones, RN, et al. Multicentre studies of tigecycline disk diffusion susceptibility results for Acinetobacter spp. Journal of Clinical Microbiology 2007; 45: 227230.
18. Woodford, N, Fagan, EJ, Ellington, MJ. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum (beta) lactamases. Journal of Antimicrobial Chemotherapy 2006; 57: 154155.
19. Kim, J, et al. Occurrence of CTX-M-3, CTX-M-15, CTX-M-14, and CTX-M-9 extended-spectrum beta-lactamases in Enterobacteriaceae clinical isolates in Korea. Antimicrobial Agents and Chemotherapy 2005; 49: 15721575.
20. Jin, FX, Yu, JH, Mi, ZX. β-Lactamase genes and virulence genes in Escherichia coli isolated from old patients. Chinese Journal of Nosocomiology 2009; 19: 374376.
21. Pang, F, et al. Drug resistance and genotype analysis of carbapenem-resistant Enterobacteriaceae. Chinical Journal of Clinical Laboratory Science 2013; 31: 307309.
22. Ni, YY, Lu, JR, Zhang, JX. Multilevel logistic regression model applied to binary outcome measure data and its software implementation. Chinese Journal of Health Informatics and Management 2013; 10: 7580.
23. Allen, LA, et al. Discharge to a skilled nursing facility and subsequent clinical outcomes among older patients hospitalized for heart failure. Circulation Heart Failure 2011; 4: 293300.
24. Kelley, AS, et al. Determinants of deaths in the hospital among older adults. Journal of the American Geriatrics Society 2011; 59: 23212325.
25. Chan, TC, et al. Association between functional status of Chinese nursing home older adults and long term mortality. Journal of the American Medical Directors Association 2013; 14: e1e5.
26. Shanghai Statistics Bureau. The latest living report of Shanghai older adults. 2014. (http://www.stats-sh.gov.cn/xwdt/201103/95569.html). Accessed 15 January 2015.
27. Olofsson, M, et al. Low level of antimicrobial resistance in Escherichia coli among Swedish nursing home residents. Scandinavian Journal of Infectious Diseases 2013; 45: 117123.
28. Yamamoto, A. Extended-spectrum β-lactamases (ESBL)-producing Escherichia coli is frequently detected as a pathogen of urinary tract infection in nursing home residents. Nihon Ronen Iqakkai Zasshi 2011; 48: 530538.
29. Leistner, R, et al. Risk factors associated with the community-acquired colonization of extended-spectrum Beta-lactamase (ESBL) positive Escherichia coli. An exploratory case-control study. PLoS ONE 2013; 8: e74323.
30. Overdevest, I, et al. Extended-spectrum beta-lactamase genes of Escherichia coli in chicken meat and humans, The Netherlands. Emerging Infectious Diseases 2011; 17: 12161222.
31. Nicolas-Chanoine, MH, et al. 10-Fold increase (2006–11) in the rate of healthy subjects with extended-spectrum beta-lactamase-producing Escherichia coli faecal carriage in a Parisian check-up centre. Journal of Antimicrobial Chemotherapy 2013; 68: 562568.
32. Kola, A, et al. High prevalence of extended-spectrum-beta-lactamase-producing Enterobacteriaceae in organic and conventional retail chicken meat, Germany. Journal of Antimicrobial Chemotherapy 2012; 67: 26312634.
33. Gaynes, RP, et al. Antibiotic-resistance flora in nursing home patients admitted to the hospital. Archives of Internal Medicine 1985; 145: 18041807.
34. Loeb, M, et al. Effect of a multifaceted intervention on number of antimicrobial prescriptions for suspected urinary tract infections in residents of nursing homes: cluster randomised controlled trial. British Medical Journal 2005; 331: 669673.
35. Bisson, G, et al. Extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella species: risk factors for colonization and impact of antimicrobial formulary interventions on colonization prevalence. Infection Control and Hospital Epidemiology 2002; 23: 254260.

Keywords

Type Description Title
WORD
Supplementary materials

Zhao supplementary material
Zhao supplementary material 1

 Word (243 KB)
243 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed