Skip to main content Accessibility help
×
Home

Emerging arboviruses in Quebec, Canada: assessing public health risk by serology in humans, horses and pet dogs

  • J. P. ROCHELEAU (a1), P. MICHEL (a1) (a2), L. R. LINDSAY (a3), M. DREBOT (a3), A. DIBERNARDO (a3), N.H OGDEN (a1) (a4), A. FORTIN (a5) and J. ARSENAULT (a1) (a6)...

Summary

Periodic outbreaks of West Nile virus (WNV), Eastern equine encephalitis virus (EEEV) and to a lesser extent, California serogroup viruses (CSGV), have been reported in parts of Canada in the last decade. This study was designed to provide a broad assessment of arboviral activity in Quebec, Canada, by conducting serological surveys for these arboviruses in 196 horses, 1442 dogs and 485 humans. Sera were screened by a competitive enzyme linked immunosorbent assay and positive samples confirmed by plaque reduction neutralisation tests. The percentage of seropositive samples was 83·7%, 16·5%, 7·1% in horses, 18·8%, 0·6%, 0% in humans, 11·7%, 3·1%, 0% in adult dogs and 2·9%, 0·3%, 0% in juvenile dogs for CSGV, WNV and EEEV, respectively. Serological results in horses and dogs appeared to provide a meaningful assessment of risk to public health posed by multiple arboviruses.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Emerging arboviruses in Quebec, Canada: assessing public health risk by serology in humans, horses and pet dogs
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Emerging arboviruses in Quebec, Canada: assessing public health risk by serology in humans, horses and pet dogs
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Emerging arboviruses in Quebec, Canada: assessing public health risk by serology in humans, horses and pet dogs
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: J. P. Rocheleau, Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, Canada J2S 2M2. (Email: jean-philippe.rocheleau@umontreal.ca)

References

Hide All
1. Weaver, SC, Reisen, WK. Present and future arboviral threats. Antiviral Research 2010; 85: 328345.
2. Komar, N. West Nile virus: epidemiology and ecology in North America. Advances in Virus Research 2003; 61: 185234.
3. Armstrong, PM, Andreadis, TG. Eastern equine encephalitis virus – old enemy, new threat. New England Journal of Medicine 2013; 368: 16701673.
4. Rocheleau, JP, et al. Eastern equine encephalitis virus: high seroprevalence in horses from Southern Quebec, Canada, 2012. Vector Borne and Zoonotic Diseases 2013; 13: 712718.
5. Drebot, MA. Emerging mosquito-borne bunyaviruses in Canada. Canada Communicable Disease Report 2015; 41: 117123.
6. Kuhn, JH, Peters, CJ. Arthropod-borne and rodent-borne virus infections. In: Kasper, D, et al. , eds. Harrison's Principles of Internal Medicine, 19e. New York, NY: McGraw-Hill, 2014 (http://accessmedicine.mhmedical.com/content.aspx?bookid=1130&sectionid=79739575). Accessed 21 September 2017.
7. Sorvillo, F, Shafir, S. Control of microbial threats: population surveillance, vaccine studies, and the microbiological laboratory. In: Detels, R, et al. , eds. Oxford Textbook of Public Health. New York: Oxford University Press, 2009, pp. 858869.
8. Government of Canada. Surveillance of West Nile virus (http://healthycanadians.gc.ca/diseases-conditions-maladies-affections/disease-maladie/west-nile-nil-occidental/surveillance-eng.php). Accessed 13 February 2016.
9. Centers for Disease Control and Prevention. Guidelines for arboviruses surveillance programs in the United States (http://www.cdc.gov/ncezid/dvbd/pdf/arboguid_508.pdf). Accessed 3 October 2015.
10. Ontario Agency for Health Protection and Promotion (Public Health Ontario). Eastern equine encephalitis: history and enhanced surveillance in Ontario (http://www.publichealthontario.ca/en/eRepository/Eastern_Equine_Encephalitis_Virus_Report_2014.pdf). Accessed 17 January 2015.
11. Calisher, CH, et al. Relevance of detection of immunoglobulin M antibody response in birds used for arbovirus surveillance. Journal of Clinical Microbiology 1986; 24: 770774.
12. Crans, WJ. Failure of chickens to act as sentinels during an epizootic of eastern equine encephalitis in southern New Jersey, USA. Journal of Medical Entomology 1986; 23: 626629.
13. Morris, CD, et al. Comparison of chickens and pheasants as sentinels for eastern equine encephalitis and St. Louis encephalitis viruses in Florida. Journal of the American Mosquito Control Association 1994; 10: 545548.
14. Resnick, MP, et al. Juvenile dogs as potential sentinels for West Nile virus surveillance. Zoonoses and Public Health 2008; 55: 443447.
15. Shimoda, H, et al. Dogs as sentinels for human infection with Japanese encephalitis virus. Emerging Infectious Diseases 2010; 16: 11371139.
16. Kile, JC, et al. Serologic survey of cats and dogs during an epidemic of West Nile virus infection in humans. Journal of the American Veterinary Medical Association 2005; 226: 13491353.
17. National Public Health Institute of Quebec. Strategic impact assessment of the government response plan for public health protection against West Nile virus – Main Report (https://www.inspq.qc.ca/pdf/publications/687_Rapport_principal_EIS.pdf). Accessed 23 March 2015.
18. National Public Health Institute of Quebec. The risk of West Nile Virus in Quebec and interventions prioritized in 2013 (http://www.inspq.qc.ca/pdf/publications/1629_RisqueVNOQcIntervPrivil2013.pdf). Accessed 7 July 2015.
19. Vincent, C, et al. Surveillance of eastern equine encephalomyelitis in Quebec. Proceedings of the 2011 Conference – Event detection and surveillance. St-Hyacinthe: Canadian Association of Veterinary Epidemiology and Preventive Medicine, 2011, p. 68.
20. National Public Health Institute of Quebec. 2011–2012 Activity report of the Quebec public health laboratory (https://www.inspq.qc.ca/publications/1595). Accessed 15 April 2015.
21. Quebec Ministry of Agriculture Fisheries and Food. Eastern equine encephalomyelitis (http://www.mapaq.gouv.qc.ca/fr/Productions/santeanimale/maladies/transmissibleshumain/Pages/encephalomyeliteequinedelest.aspx). Accessed 5 June 2015.
22. Quebec Ministry of Health and Social Services. West Nile Virus – Cases in Humans (http://www.msss.gouv.qc.ca/sujets/santepub/environnement/index.php?id=127,156,0,0,1,0). Accessed 29 July 2015.
23. Statistics Canada. Census Profile 2011 – Health regions (December 2013) (http://www12.statcan.gc.ca/census-recensement/2011/dp-pd/prof/details/download-telecharger/comprehensive/comp-csv-tab-dwnld-tlchrgr.cfm?Lang=E#tabs2011). Accessed 11 December 2015.
24. Chappuis, G. Neonatal immunity and immunisation in early age: lessons from veterinary medicine. Vaccine 1998; 16: 14681472.
25. Clarke, DH, Casals, J. Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne viruses. American Journal of Tropical Medicine and Hygiene 1958; 7: 561573.
26. Blitvich, BJ, et al. Epitope-blocking enzyme-linked immunosorbent assays for the detection of serum antibodies to West Nile virus in multiple avian species. Journal of Clinical Microbiology 2003; 41: 10411047.
27. Beaty, BJ, Calisher, CH, Shope, RS. Arboviruses. In: Schmidt, NJ, Emmons, RW, eds. Diagnostic Procedures for Viral, Rickettsial and Chlamydial Infections. Washington: American Public Health Association, 1989, pp. 797856.
28. Goff, G, Whitney, H, Drebot, MA. Roles of host species, geographic separation, and isolation in the seroprevalence of Jamestown Canyon and snowshoe hare viruses in Newfoundland. Applied and Environmental Microbiology 2012; 78: 67346740.
29. Artsob, H. Distribution of California serogroup viruses and virus infections in Canada. Progress in Clinical and Biological Research 1983; 123: 277290.
30. Petersen, LR, Brault, AC, Nasci, RS. West Nile virus: review of the literature. Journal of the American Medical Association 2013; 310: 308315.
31. Molaei, G, et al. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerging Infectious Diseases 2006; 12: 468474.
32. Molaei, G, et al. Molecular identification of blood-meal sources in Culiseta melanura and Culiseta morsitans from an endemic focus of eastern equine encephalitis virus in New York. The American Journal of Tropical Medicine and Hygiene 2006; 75: 11401147.
33. Richards, SL, et al. Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in relation to availability of human and domestic animals in suburban landscapes of central North Carolina. Journal of Medical Entomology 2006; 43: 543551.
34. Ulloa, A, et al. Serologic survey of domestic animals for zoonotic arbovirus infections in the Lacandon Forest region of Chiapas, Mexico. Vector Borne and Zoonotic Diseases 2003; 3: 39.
35. De Filette, M, et al. Recent progress in West Nile virus diagnosis and vaccination. Veterinary Research 2012; 43: 16.
36. National Public Health Institute of Quebec. Monitoring infection by West Nile virus in Quebec – 2014 Season (https://www.inspq.qc.ca/pdf/publications/2030_surveillance_infection_virus_nil.pdf). Accessed 15 April 2016.
37. World Organisation for Animal Health. Manual of diagnostic tests and vaccines for terrestrial animals, 2015 (http://www.oie.int/international-standard-setting/terrestrial-manual/). Accessed 15 April 2016.
38. Loeb, M, et al. Protective behavior and West Nile virus risk. Emerging Infectious Diseases 2005; 11: 14331436.

Keywords

Emerging arboviruses in Quebec, Canada: assessing public health risk by serology in humans, horses and pet dogs

  • J. P. ROCHELEAU (a1), P. MICHEL (a1) (a2), L. R. LINDSAY (a3), M. DREBOT (a3), A. DIBERNARDO (a3), N.H OGDEN (a1) (a4), A. FORTIN (a5) and J. ARSENAULT (a1) (a6)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed