Skip to main content Accessibility help
×
Home

Dynamic transmission modelling to address infant pneumococcal conjugate vaccine schedule modifications in the UK

  • M. Wasserman (a1), A. Lucas (a2), D. Jones (a3), M. Wilson (a2), B. Hilton (a4), A. Vyse (a3), H. Madhava (a3), A. Brogan (a5), M. Slack (a6) and R. Farkouh (a4)...

Abstract

The 13-valent pneumococcal conjugate vaccine (PCV) has been part of routine immunisation in a 2 + 1 schedule (two primary infant doses and one booster during the second year of life) in the UK since 2010. Recently, the UK's Joint Committee on Vaccination and Immunisation recommended changing to a 1 + 1 schedule while conceding that this will increase disease burden; however, uncertainty remains on how much pneumococcal burden – including invasive pneumococcal disease (IPD) and non-invasive disease – will increase. We built a dynamic transmission model to investigate this question. The model predicted that a 1 + 1 schedule would incur 8777–27 807 additional cases of disease and 241–743 more deaths over 5 years. Serotype 19A caused 55–71% of incremental IPD cases. Scenario analyses showed that booster dose adherence, effectiveness against carriage and waning in a 1 + 1 schedule had the most influence on resurgence of disease. Based on the model assumptions, switching to a 1 + 1 schedule will substantially increase disease burden. The results likely are conservative since they are based on relatively low vaccine-type pneumococcal transmission, a paradigm that has been called into question by data demonstrating an increase of IPD due to several vaccine serotypes during the last surveillance year available.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dynamic transmission modelling to address infant pneumococcal conjugate vaccine schedule modifications in the UK
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dynamic transmission modelling to address infant pneumococcal conjugate vaccine schedule modifications in the UK
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dynamic transmission modelling to address infant pneumococcal conjugate vaccine schedule modifications in the UK
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

Author for correspondence: M. Wasserman, E-mail: matt.wasserman@pfizer.com

References

Hide All
1.Bornheimer, R et al. (2017) Risk of exacerbation following pneumonia in adults with heart failure or chronic obstructive pulmonary disease. PLoS ONE 12, e0184877.
2.Corrales-Medina, VF et al. (2015) Association between hospitalization for pneumonia and subsequent risk of cardiovascular disease. Journal of the American Medical Association 313, 264274.
3.Melegaro, A and Edmunds, WJ (2004) Cost-effectiveness analysis of pneumococcal conjugate vaccination in England and Wales. Vaccine 22, 42034214.
4.van Hoek, AJ et al. (2012) The effect of underlying clinical conditions on the risk of developing invasive pneumococcal disease in England. Journal of Infection 65, 1724.
5.Devine, VT et al. (2017) The rise and fall of pneumococcal serotypes carried in the PCV era. Vaccine 35, 12931298.
6.van Hoek, AJ et al. (2014) Pneumococcal carriage in children and adults two years after introduction of the thirteen valent pneumococcal conjugate vaccine in England. Vaccine 32, 43494355.
7.Ladhani, SN et al. (2018) Rapid increase in non-vaccine serotypes causing invasive pneumococcal disease in England and Wales, 2000–17: a prospective national observational cohort study. The Lancet Infectious Diseases 18, 441451.
8.Waight, PA et al. (2015) Effect of the 13-valent pneumococcal conjugate vaccine on invasive pneumococcal disease in England and Wales 4 years after its introduction: an observational cohort study. The Lancet Infectious Diseases 15, 535543.
9.Lau, WC et al. (2015) Impact of pneumococcal conjugate vaccines on childhood otitis media in the United Kingdom. Vaccine 33, 50725079.
10.Rodrigo, C et al. (2015) Impact of infant 13-valent pneumococcal conjugate vaccine on serotypes in adult pneumonia. European Respiratory Journal 45, 16321641.
11.JCVI (2017) Draft minutes of the meeting on 4 October 2017. Joint Committee on Vaccination and Immunisation.
12.Flasche, S et al. (2015) The potential for reducing the number of pneumococcal conjugate vaccine doses while sustaining herd immunity in high-income countries. PLoS Medicine 12, e1001839.
13.Goldblatt, D et al. (2018) Pneumococcal conjugate vaccine 13 delivered as one primary and one booster dose (1 + 1) compared with two primary doses and a booster (2 + 1) in UK infants: a multicentre, parallel group randomised controlled trial. The Lancet Infectious Diseases 18, 171179.
14.Collins, S et al. (2016) Trends in invasive pneumococcal disease over time: England and Wales 2000/01 to 2014/15. In: 10th International Symposium on Pneumococci and Pneumococcal Diseases. Glasgow, Scotland.
15.NHS Digital (2016–17) Childhood vaccination coverage statistics, England: National Health Service; 20 September 2017.
16.Mosser, JF et al. (2014) Nasopharyngeal carriage and transmission of Streptococcus pneumoniae in American Indian households after a decade of pneumococcal conjugate vaccine use. PLoS ONE 9, e79578.
17.Andrews, N et al. (2011) Using the indirect cohort design to estimate the effectiveness of the seven valent pneumococcal conjugate vaccine in England and Wales. PLoS ONE 6, e28435.
18.Andrews, NJ et al. (2014) Serotype-specific effectiveness and correlates of protection for the 13-valent pneumococcal conjugate vaccine: a postlicensure indirect cohort study. The Lancet Infectious Diseases 14, 839846.
19.Sleeman, KL et al. (2006) Capsular serotype-specific attack rates and duration of carriage of Streptococcus pneumoniae in a population of children. Journal of Infectious Diseases 194, 682688.
20.World Bank. World development indicators. 2018.
21.Office of National Statistics. Death registrations summary statistics, England and Wales. 2015.
22.Thorrington, D et al. (2018) Elucidating the impact of the pneumococcal conjugate vaccine programme on pneumonia, sepsis and otitis media hospital admissions in England using a composite control. BMC Medicine 16, 13.
23.Thorrington, D et al. (2018) Impact and cost-effectiveness of different vaccination strategies to reduce the burden of pneumococcal disease among elderly in the Netherlands. PLoS ONE 13, e0192640.
24.van Hoek, AJ et al. (2012) The cost-effectiveness of a 13-valent pneumococcal conjugate vaccination for infants in England. Vaccine 30, 72057213.
25.University College London. THIN database – a collaboration between In Practice Systems (INPS) and IMS Health. 14 April 2015.
26.NHS Digital. Hospital admitted patient care activity, 2015–16. National Health Service; 9 November 2016.
27.Daniel, P et al. Adult community acquired pneumonia (CAP) audit report. National audit period: 1 December 2014–31 January 2015. British Thoracic Society; 30 November 2015.
28.Bewick, T et al. (2012) Serotype prevalence in adults hospitalised with pneumococcal non-invasive community-acquired pneumonia. Thorax 67, 540545.
29.Melegaro, A et al. (2006) The current burden of pneumococcal disease in England and Wales. Journal of Infection 52, 3748.
30.Abel, GJ and Sander, N (2014) Quantifying global international migration flows. Science 343, 15201522.
31.Choi, YH et al. (2011) 7-Valent pneumococcal conjugate vaccination in England and Wales: is it still beneficial despite high levels of serotype replacement? PLoS ONE 6, e26190.
32.Lamb, KE, Greenhalgh, D and Robertson, C (2011) A simple mathematical model for genetic effects in pneumococcal carriage and transmission. Journal of Computational and Applied Mathematics 235, 18121818.
33.Snedecor, SJ et al. (2009) Transmission-dynamic model to capture the indirect effects of infant vaccination with Prevnar (7-valent pneumococcal conjugate vaccine (PCV7)) in older populations. Vaccine 27, 46944703.
34.Van Effelterre, T et al. (2010) A dynamic model of pneumococcal infection in the United States: implications for prevention through vaccination. Vaccine 28, 36503660.
35.Choi, YH et al. (2012) Mathematical modelling long-term effects of replacing Prevnar7 with Prevnar13 on invasive pneumococcal diseases in England and Wales. PLoS ONE 7, e39927.
36.Whitney, CG et al. (2006) Effectiveness of seven-valent pneumococcal conjugate vaccine against invasive pneumococcal disease: a matched case-control study. The Lancet 368, 14951502.
37.Chalmers, J et al. (2017) Community-acquired pneumonia in the United Kingdom: a call to action. Pneumonia (Nathan Qld) 9, 15.
38.Dagan, R et al. (2016) Prevention of early episodes of otitis media by pneumococcal vaccines might reduce progression to complex disease. The Lancet Infectious Diseases 16, 480492.
39.Lewnard, JA et al. (2017) Pan-serotype reduction in progression of Streptococcus pneumoniae to otitis media after rollout of pneumococcal conjugate vaccines. Clinical Infectious Diseases 65, 18531861.
40.Isturiz, R et al. (2017) Streptococcus pneumoniae serotype 19A: worldwide epidemiology. Expert Review of Vaccines 16, 10071027.
41.O'Neil, J. Tackling drug-resistant infections globally: final report and recommendations. The Review on Antimicrobial Resistance; May 2016.
42.Jodar, L et al. (2003) Serological criteria for evaluation and licensure of new pneumococcal conjugate vaccine formulations for use in infants. Vaccine 21, 32653272.
43.WHO. Recommendations to assure the quality, safety and efficacy of pneumococcal conjugate vaccines. Technical report series: the immunological basis of immunization. Module 12: pneumococcal vaccines. World Health Organization; 2009.
44.Goldblatt, D et al. (2005) Antibody responses to nasopharyngeal carriage of Streptococcus pneumoniae in adults: a longitudinal household study. Journal of Infectious Diseases 192, 387393.
45.Hussain, M et al. (2005) A longitudinal household study of Streptococcus pneumoniae nasopharyngeal carriage in a UK setting. Epidemiology and Infection 133, 891898.
46.Simell, B et al. (2012) The fundamental link between pneumococcal carriage and disease. Expert Review of Vaccines 11, 841855.
47.Sleeman, KL et al. (2005) Acquisition of Streptococcus pneumoniae and nonspecific morbidity in infants and their families: a cohort study. Pediatric Infectious Disease Journal 24, 121127.
48.Bottomley, C et al. (2013) A mathematical model of serotype replacement in pneumococcal carriage following vaccination. Journal of the Royal Society Interface 10, 20130786.
49.Brugger, SD, Hathaway, LJ and Muhlemann, K (2009) Detection of Streptococcus pneumoniae strain cocolonization in the nasopharynx. Journal of Clinical Microbiology 47, 17501756.
50.Saha, S et al. (2015) Detection of co-colonization with Streptococcus pneumoniae by algorithmic use of conventional and molecular methods. Vaccine 33, 713718.
51.JCVI (2014) Minutes of the meeting on 1 October 2014. Joint Committee on Vaccination and Immunisation.
52.Public Health England. Laboratory confirmed cases of invasive meningococcal infection (England): July to September 2017. 11 December 2017. (Health protection report; series 11; no. 45).

Keywords

Type Description Title
WORD
Supplementary materials

Wasserman et al. supplementary material
Wasserman et al. supplementary material 1

 Word (934 KB)
934 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed