Skip to main content Accessibility help
×
Home

Dynamic modelling of strategies for the control of acute haemorrhagic conjunctivitis outbreaks in schools in Changsha, China (2004–2015)

  • S. L. CHEN (a1), R. C. LIU (a1), F. M. CHEN (a1), X. X. ZHANG (a1), J. ZHAO (a1) and T. M. CHEN (a1)...

Summary

Outbreaks of acute haemorrhagic conjunctivitis (AHC) – a rapidly progressing and highly contagious infection – often occur in schools during summer and autumn. We used dynamic modelling to evaluate the efficacy of interventions to control AHC outbreaks in schools. A susceptible-infected-recovered (SIR) model was built to simulate AHC outbreaks in Chinese schools, with isolation or school closure added into the model. We used outbreak data from the period 2004–2015 in our models to estimate the effective reproduction number and assess the efficacy of interventions. The median effective reproduction number (uncontrolled) of AHC outbreaks was 7·00 (range 1·77–25·87). The median effective reproduction number (controlled) of AHC outbreaks was 0·16 (range 0·00–2·28). Intervention efficacy is affected by the timing of isolation; earlier isolation is associated with a lower morbidity peak and smaller total attack rate (TAR). School closures were not effective; TARs were almost 100% and did not change even when different school closure durations were adopted. Isolation and school closure as a combined intervention strategy was used to simulate outbreak control, but the efficacy was the same as isolation alone. An isolation programme could be an effective primary intervention during AHC outbreaks in schools. However, school closure is not recommended.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dynamic modelling of strategies for the control of acute haemorrhagic conjunctivitis outbreaks in schools in Changsha, China (2004–2015)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dynamic modelling of strategies for the control of acute haemorrhagic conjunctivitis outbreaks in schools in Changsha, China (2004–2015)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dynamic modelling of strategies for the control of acute haemorrhagic conjunctivitis outbreaks in schools in Changsha, China (2004–2015)
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr T. M. Chen, Office for Disease Control and Emergency Response, Changsha Center for Disease Control and Prevention, 149 Wei'er Road, Changsha, Hunan Province 410004, People's Republic of China. (Email: 13698665@qq.com)

References

Hide All
1. Sklar, VE, et al. Clinical findings and results of treatment in an outbreak of acute hemorrhagic conjunctivitis in Southern Florida. American Journal of Ophthalmology 1983; 95: 4554.
2. Wright, PW, et al. Acute hemorrhagic conjunctivitis. American Family Physician 1992; 45: 173178.
3. Kishore, J, et al. Study of an outbreak of epidemic conjunctivitis in Delhi in 1986. Indian Journal of Pathology & Microbiology 1989; 32: 266269.
4. Wu, B, et al. Genetic characteristics of the coxsackievirus A24 variant causing outbreaks of acute hemorrhagic conjunctivitisin Jiangsu, China, 2010 PLoS ONE 2014; 9: e86883.
5. Yan, D, et al. Outbreak of acute hemorrhagic conjunctivitis in Yunnan, People's Republic of China, 2007. Virology Journal 2010; 7: 138.
6. Mu, GF. An etiological study of acute hemorrhagic conjunctivitis in Beijing area in 1984 [in Chinese]. Zhonghua Yan Ke Za Zhi 1989; 25: 2022.
7. Meng, R, et al. Study on etiology of acute hemorrhagic conjunctivitis in Qingdao during 1997 [in Chinese]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 1999; 13: 186187.
8. Mu, GF. Etiology of 1988 epidemic of acute hemorrhagic conjunctivitis in Beijing [in Chinese]. Zhonghua Yu Fang Yi Xue Za Zhi 1990; 24: 129131.
9. Shen, MW, et al. Modeling the effect of comprehensive interventions on Ebola virus transmission. Scientific Reports 2015; 5: 15818.
10. Lai, C-C, et al. A dynamic model for the outbreaks of hand, foot, and mouth disease in Taiwan. Epidemiology and Infection 2016; 144: 15001511.
11. Zhang, Q, Wang, D. Assessing the role of voluntary self-isolation in the control of pandemic influenza using a household epidemic model. International Journal of Environmental Research and Public Health 2015; 12: 97509767.
12. Heymann, AD, et al. School closure may be effective in reducing transmission of respiratory viruses in the community. Epidemiology and Infection 2009; 137: 13691376.
13. Copeland, DL, et al. Effectiveness of a school district closure for pandemic influenza A (H1N1) on acute respiratory illnesses in the community: a natural experiment. Clinical Infectious Diseases 2013; 56: 509516.
14. Cauchemez, S, et al. Estimating the impact of school closure on influenza transmission from Sentinel data. Nature 2008; 452: 750754.
15. Morimoto, T, Ishikawa, H. Assessment of intervention strategies against a novel influenza epidemic using an individual-based model. Environmental Health and Preventive Medicine 2010; 15: 151161.
16. Kawano, S, Kakehashi, M. Substantial impact of school closure on the transmission dynamics during the pandemic flu H1N1-2009 in Oita, Japan. PLoS ONE 2015; 10: e0144839.
17. Chen, B, et al. A Modeling and experiment framework for the emergency management in AHC transmission. Computational and Mathematical Methods in Medicine 2014; 2014: 897532.
18. Chen, TM, et al. Application of Susceptible-Infected-Recovered model in dealing with an outbreak of acute hemorrhagic conjunctivitis at one school [in Chinese]. Zhonghua Liu Xing Bing Xue Za Zhi 2011; 32: 830833.
19. Chen, TM, Liu, RC. Study on the efficacy of quarantine during outbreaks of acute hemorrhagic conjunctivitis outbreaks at schools through the susceptive-infective-quarantine-removal model [in Chinese]. Zhonghua Liu Xing Bing Xue Za Zhi 2013; 34: 7579.
20. Ministry of Health of the People's Republic of China. WS 217–2008 Diagnostic criteria of acute hemorrhagic conjunctivitis. 2008 (http://www.nhfpc.gov.cn/zwgkzt/s9491/200802/39044.shtml). Accessed 17 June 2016.
21. Kermack, WO, McKendrick, AG. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London 1927; 115: 700721.
22. Hethcote, H, et al. Effects of quarantine in six endemic models for infectious diseases. Mathematical Biosciences 2002; 180: 141141.
23. Waterman, SH, et al. Acute hemorrhagic conjunctivitis in Puerto Rico, 1981–1982. American Journal of Epidemiology 1984; 120: 395403.
24. Reeves, WC, et al. Acute hemorrhagic conjunctivitis epidemic in Colon, Republic of Panama. American Journal of Epidemiology 1986; 12: 325335.
25. Xu, WX, Zhang, ZH. Asymptotic analysis of an age-dependent SIR epidemic model [in Chinese]. Journal of Xi'AnJiaotong University 2003; 37: 10861089.
26. Halder, N, et al. Analysis of the effectiveness of interventions used during the 2009 A/H1N1 influenza pandemic. BMC Public Health 2010; 10: 168.
27. Davis, BM, et al. The effect of reactive school closure on community influenza-like illness counts in the state of Michigan during the 2009 H1N1 pandemic. Clinical Infectious Diseases 2015; 60: e9097.
28. Luo, TY, et al. Influence of school closure on the prevention and control of infection dieases [in Chinese]. Chinese Journal of School Health 2012; 33: 465467.
29. Sadique, MZ, et al. Estimating the costs of school closure for mitigating an influenza pandemic. BMC Public Health 2008; 8: 135.
30. Liu, YJ, et al. Coping with stress caused by the event of SARS attack in Chinese school children [in Chinese]. Chinese Journal of Behavioral Medical Science 2005; 14: 10161018.
31. Ministry of Health of the People's Republic of China. Specification on the management for reporting national public health emergency information (trial). Gazette of the Ministry of Health of People's Republic of China 2006; 1: 4460.
32. Ministry of Health of the People's Republic of China. Specification of handling hand-foot-mouth disease aggregation and outbreaks (2012 edition). Gazette of the Ministry of Health of People's Republic of China 2012; 6: 3941.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed