Skip to main content Accessibility help
×
Home

The differences in short- and long-term varicella-zoster virus (VZV) immunoglobulin G levels following varicella vaccination of healthcare workers measured by VZV fluorescent-antibody-to-membrane-antigen assay (FAMA), VZV time-resolved fluorescence immunoassay and a VZV purified glycoprotein enzyme immunoassay

  • P. A. C. MAPLE (a1) (a2), J. HAEDICKE (a3), M. QUINLIVAN (a3), S. P. STEINBERG (a4), A. A. GERSHON (a4), K. E. BROWN (a1) and J. BREUER (a3)...

Summary

Healthcare workers (HCWs) reporting no history of varicella frequently receive varicella vaccination (vOka) if they test varicella-zoster virus (VZV) immunoglobulin G (IgG) negative. In this study, the utilities of VZV-IgG time-resolved fluorescence immunoassay (VZV-TRFIA) and a commercial VZV-IgG purified glycoprotein enzyme immunoassay (gpEIA) currently used in England for confirming VZV immunity have been compared to the fluorescent-antibody-to-membrane-antigen assay (FAMA). A total of 110 HCWs received two doses of vOka vaccine spaced 6 weeks apart and sera collected pre-vaccination (n = 100), at 6 weeks post-completion of vaccination (n = 86) and at 12–18 months follow-up (n = 73) were analysed. Pre-vaccination, by FAMA, 61·0% sera were VZV IgG negative, and compared to FAMA the sensitivities of VZV-TRFIA and gpEIA were 74·4% [95% confidence interval (CI) 57·9–87·0] and 46·2% (95% CI 30·1–62·8), respectively. Post-completion of vaccination the seroconversion rate by FAMA was 93·7% compared to rates of 95·8% and 70·8% determined by VZV-TRFIA and gpEIA, respectively. At 12–18 months follow-up seropositivity rates by FAMA, VZV-TRFIA and gpEIA were 78·1%, 74·0% and 47·9%, respectively. Compared to FAMA the sensitivities of VZV-TRFIA and gpEIA for measuring VZV IgG following vaccination were 96·4% (95% CI 91·7–98·8) and 74·6% (95% CI 66·5–81·6), respectively. Using both FAMA and VZV-TRFIA to identify healthy adult VZV susceptibles and measure seroconversion showed that vOka vaccination of HCWs is highly immunogenic.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The differences in short- and long-term varicella-zoster virus (VZV) immunoglobulin G levels following varicella vaccination of healthcare workers measured by VZV fluorescent-antibody-to-membrane-antigen assay (FAMA), VZV time-resolved fluorescence immunoassay and a VZV purified glycoprotein enzyme immunoassay
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The differences in short- and long-term varicella-zoster virus (VZV) immunoglobulin G levels following varicella vaccination of healthcare workers measured by VZV fluorescent-antibody-to-membrane-antigen assay (FAMA), VZV time-resolved fluorescence immunoassay and a VZV purified glycoprotein enzyme immunoassay
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The differences in short- and long-term varicella-zoster virus (VZV) immunoglobulin G levels following varicella vaccination of healthcare workers measured by VZV fluorescent-antibody-to-membrane-antigen assay (FAMA), VZV time-resolved fluorescence immunoassay and a VZV purified glycoprotein enzyme immunoassay
      Available formats
      ×

Copyright

Corresponding author

* Author for correspondence: Dr P. A. C. Maple, East Yorkshire Microbiology, Innovation Centre, York Science Park, York YO10 5DG, UK. (Email: eastyorksmicrobiol@gmail.com)

References

Hide All
1. Kudesia, G, et al. Changes in age related seroprevalence of antibody to varicella zoster virus: impact on vaccine strategy. Journal of Clinical Pathology 2002; 55: 154155.
2. Manikkavasagan, G, et al. The epidemiology of chickenpox in UK 5-year olds: an analysis to inform vaccine policy. Vaccine 2010; 28: 76997705.
3. Harger, JH, et al. Risk factors and outcome of varicella-zoster virus pneumonia in pregnant women. Journal of Infectious Diseases 2002; 185: 422427.
4. Tunbridge, AJ, et al. Chickenpox in adults – clinical management. Journal of Infection 2008; 57: 95102.
5. Daley, AJ, Thorpe, S, Garland, SM. Varicella and the pregnant woman: prevention and management. Australian and New Zealand Journal of Obstetrics and Gynaecology 2008; 48: 2633.
6. Breuer, J. Vaccination to prevent varicella and shingles. Journal of Clinical Pathology 2001; 54: 743747.
7. Bonanni, P, et al. Varicella vaccination in Europe – taking the practical approach. BMC Medicine 2009; 7: 26.
8. Breuer, J. Live attenuated vaccine for the prevention of varicella-zoster virus infection: does it work, is it safe and do we really need it in the UK? Journal of Medical Microbiology 2003; 52: 13.
9. Almuneef, M, et al. Varicella zoster immunity in multinational health care workers of a Saudi Arabian hospital. American Journal of Infection Control 2003; 31: 375381.
10. Baracco, GJ, et al. Clinical and economic impact of various strategies for varicella immunity screening and vaccination of health care personnel. American Journal of Infection Control 2015; 43: 10531060.
11. Williams, V, Gershon, A, Brunell, PA. Serologic response to varicella-zoster membrane antigens measured by indirect fluorescence. Journal of Infectious Diseases 1974; 130: 669672.
12. Gershon, AA, Krugman, S. Seroepidemiologic survey of varicella: value of specific fluorescent antibody test. Pediatrics 1975; 56: 10051008.
13. Grose, C, Edmond, BJ, Brunell, PA. Complement enhanced neutralizing antibody response to varicella-zoster virus. Journal of Infectious Diseases 1979; 139: 432437.
14. Zaia, JA, Oxman, MN. Antibody to varicella-zoster virus-induced membrane antigen: immunofluorescence assay using monodisperse glutaraldehyde fixed target cells. Journal of Infectious Diseases 1977; 136: 519530.
15. Grandien, M, et al. Determination of varicella immunity by the indirect immunofluorescence test in urgent clinical situations. Scandinavian Journal of Infectious Diseases 1976; 8: 6569.
16. Arvin, AM. Varicella vaccine – the first six years. New England Journal of Medicine 2001; 344: 10071009.
17. Ndumbe, PM, Cradock-Watson, J, Levinsky, RJ. Natural and artificial immunity to Varicella Zoster virus. Journal of Medical Virology 1988; 25: 171178.
18. Wasmuth, EH, Miller, WJ. Sensitive enzyme-linked immunosorbent assay for antibody to Varicella-Zoster virus using purified VZV glycoprotein antigen. Journal of Medical Virology 1990; 32: 189193.
19. Hammond, O, et al. The optimization and validation of the glycoprotein ELISA assay for quantitative varicella-zoster virus (VZV) antibody detection. Journal of Medical Virology 2006; 78: 16791687.
20. Breuer, J, Schmid, DS, Gershon, AA. Use and limitations of varicella-zoster virus-specific serological testing to evaluate breakthrough disease in vaccinees and to screen for susceptibility to varicella. Journal of Infectious Diseases 2008; 197 (Suppl. 2): S147151.
21. Michalik, DE, et al. Primary vaccine failure after 1 dose of varicella vaccine in healthy children. Journal of Infectious Diseases 2008; 197: 944949.
22. Sauerbrei, A, Wutzler, P. Serological detection of varicella-zoster virus-specific immunoglobulin G by an enzyme-linked immunosorbent assay using glycoprotein antigen. Journal of Clinical Microbiology 2006; 44: 30943097.
23. Chris Maple, PA, et al. Performance characteristics of a quantitative, standardised varicella zoster IgG time resolved fluorescence immunoassay (VZV TRFIA) for measuring antibody following natural infection. Journal of Virological Methods 2009; 157: 9092.
24. McDonald, SLR, et al. Evaluation of the time resolved fluorescence immunoassay (TRFIA) for the detection of varicella zoster virus (VZV) antibodies following vaccination of healthcare workers. Journal of Virological Methods 2011; 172: 6065.
25. Boxall, EH, et al. Follow-up of pregnant women exposed to chicken-pox: an audit of relationship between level of antibody and development of chickenpox. European Journal of Clinical Microbiology and Infectious Diseases 2011; 30: 11931200.
26. Maple, PAC, et al. Comparison of a commercial varicella zoster glycoprotein IgG enzyme immunoassay with a reference time resolved fluorescence immunoassay (VZV TRFIA) for measuring VZV IgG in sera from pregnant women, sera sent for confirmatory testing and pre and post-vOka vaccination sera from healthcare workers. Journal of Clinical Virology 2012; 53: 201207.
27. Sauerbrei, A, et al. Evaluation of three commercial varicella-zoster virus IgG enzyme-linked immunosorbent assays in comparison to the fluorescent-antibody-to-membrane-antigen test. Clinical and Vaccine Immunology 2012; 19: 12611268.
28. Lafer, MM, et al. Comparative study of the standard fluorescent antibody to membrane antigen (FAMA) assay and a flow cytometry-adapted FAMA assay to assess immunity to Varicella-Zoster virus. Clinical and Vaccine Immunology 2011; 18: 11941197.
29. Vandersmissen, G, et al. Occupational risk of infection by varicella zoster virus in Belgian healthcare workers: a seroprevalence study. Occupational and Environmental Medicine 2000; 57: 621626.
30. Holmes, CN. Predictive value of a history of varicella infection. Canadian Family Physician 2005; 51: 6065.
31. Hambleton, S, Gershon, AA. Preventing varicella-zoster disease. Clinical Microbiology Reviews 2005; 18: 7080.
32. Maple, PAC, et al. Performance of a time-resolved fluorescence immunoassay for measuring Varicella-Zoster virus immunoglobulin G levels in adults and comparison with commercial enzyme immunoassays and Merck glycoprotein enzyme immunoassay. Clinical and Vaccine Immunology 2006; 13: 214218.
33. Nader, S, et al. Age-related differences in cell-mediated immunity to varicella-zoster virus among children and adults immunized with live attenuated varicella vaccine. Journal of Infectious Diseases 1995; 171: 1317.
34. Gershon, AA, et al. Immunization of healthy adults with live attenuated varicella vaccine. Journal of Infectious Diseases 1988; 158: 132137.
35. Saiman, L, et al. Persistence of immunity to varicella-zoster virus after vaccination of healthcare workers. Infection Control and Hospital Epidemiology 2001; 22: 279283.
36. Kim, YH, et al. Evaluation of a commercial glycoprotein enzyme-linked immunosorbent assay for measuring vaccine immunity to varicella. Yonsei Medical Journal 2014; 55: 459466.

Keywords

The differences in short- and long-term varicella-zoster virus (VZV) immunoglobulin G levels following varicella vaccination of healthcare workers measured by VZV fluorescent-antibody-to-membrane-antigen assay (FAMA), VZV time-resolved fluorescence immunoassay and a VZV purified glycoprotein enzyme immunoassay

  • P. A. C. MAPLE (a1) (a2), J. HAEDICKE (a3), M. QUINLIVAN (a3), S. P. STEINBERG (a4), A. A. GERSHON (a4), K. E. BROWN (a1) and J. BREUER (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed