Skip to main content Accessibility help
×
Home

Detection of norovirus infections in Denmark, 2011–2018

  • M. R. Korcinska (a1) (a2), K. Dalsgaard Bjerre (a1), L. Dam Rasmussen (a3), E. Tvenstrup Jensen (a1), T. K. Fischer (a4) (a5), A. Barrasa (a2) (a6) and S. Ethelberg (a1) (a7)...

Abstract

Norovirus (NoV) infections occur very frequently yet are rarely diagnosed. In Denmark, NoV infections are not under surveillance. We aimed to collect and describe existing laboratory-based NoV data. National NoV laboratory data were collected for 2011–2018, including information on patient identification number, age and sex, requesting physician, analysis date and result. We defined positive patient-episodes by using a 30-day time window and performed descriptive and time series analysis. Diagnostic methods used were assessed through a survey. We identified 15 809 patient-episodes (11%) out of 142 648 tested patients with an increasing trend, 9366 in 2011 vs. 32 260 in 2018. This corresponded with a gradual introduction of polymerase chain reaction analysis in laboratories. The highest positivity rate was in patients aged <5 years (15%) or >85 years (17%). There was a large difference in test performance over five Danish geographical regions and a marked seasonal variation with peaks from December to February. This is the first analysis of national NoV laboratory data in Denmark. A future laboratory-based surveillance system may benefit public health measures by describing trend, burden and severity of seasons and possibly pinpoint hospital outbreaks.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Detection of norovirus infections in Denmark, 2011–2018
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Detection of norovirus infections in Denmark, 2011–2018
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Detection of norovirus infections in Denmark, 2011–2018
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: S. Ethelberg, E-mail: SET@ssi.dk

References

Hide All
1.Inns, T and Harris, J (2017) Community-based surveillance of NoV disease: a systematic review. BMC Infectious Diseases 17, 657.
2.Ahmed, S et al. (2014) Global prevalence of NoV in cases of gastroenteritis: a systematic review and meta-analysis, Lancet Infectious Diseases 14, 725730. Published online: 27 June 2014.
3.Van Asten, L et al. (2011) Unspecified gastroenteritis illness and deaths in the elderly associated with norovirus epidemics. Epidemiology (Cambridge, Mass.) 22, 336343.
4.Harris, JP et al. (2008) Deaths from norovirus among the elderly, England and Wales. Emerging Infectious Diseases 14, 15461552.
5.Wolffs, PF et al. (2011) Replacing traditional diagnostics of fecal viral pathogens by a comprehensive panel of real-time PCRs. Journal of Clinical Microbiology 49, 19261931.
6.Bobo, LD and Dubberke, ER (2010) Recognition and prevention of hospital-associated enteric infections in the intensive care unit. Critical Care Medicine 38(suppl. 8), S324S334.
7.Fraizel, HA et al. (2014) Identifying Sources and Transmission Routes of Norovirus Outbreaks (dissertation). Erasmus University in Roterdam, Netherlands, ISBN/EAN: 978-90-6464-762-8.
8.Brandhof, WE et al. (2004) Costs of gastroenteritis in The Netherlands. Epidemiology and Infections 132, 211221.
9.Lindsay, L et al. (2015) A decade of norovirus disease risk among older adults in upper-middle- and high-income countries: a systematic review. BMC Infectious diseases 15, 425.
10.Patel, MM et al. (2008) Noroviruses: a comprehensive review. Journal of Clinical Virology 44, 18. Published online: 11 December 2008.
11.Ettayebi, K et al. (2016) Replication of human noroviruses in stem cell-derived human enteroids. Science (New York, N.Y.) 353, 13871393.
12.Centre for Disease Control and Prevention (2011) Updated norovirus outbreak management and disease prevention guidelines. Morbidity and Mortality Weekly Report 60, 3.
13.Harris, J (2016) Norovirus surveillance: an epidemiological perspective. The Journal of Infectious Diseases 213, S8S11. Published online: 01 February 2016.
14.Lopman, B et al. (2009) Host, weather and virological factors drive norovirus epidemiology: time-series analysis of laboratory surveillance data in England and Wales. PLoS One 4, e6671.
15.Pires, SM et al. (2019) Burden of disease estimates of seven pathogens commonly transmitted through foods in Denmark, 2017. Foodborne Pathogens and Disease doi: 10.1089/fpd.2019.2705.
16.Müller, L et al. (2015) Separate norovirus outbreaks linked to one source of imported frozen raspberries by molecular analysis, Denmark, 2010–2011. Epidemiology and Infections 143, 22992307.
17.Franck, KT et al. (2014) Norovirus epidemiology and patient age, Denmark. Emerging Infectious Diseases 20. Available at www.cdc.gov/eid, http://dx.doi.og/10.32301/eid2007.130781.
18.Müller, L et al. (2016) Series of norovirus outbreaks caused by consumption of green coral lettuce, Denmark, April 2016. PLoS Currents 8. doi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5074700/.
19.Franck, KT et al. (2015) Sources of calicivirus contamination in foodborne outbreaks in Denmark, 2005–2011 – the role of the asymptomatic food handler. The Journal of Infectious Diseases 211, 563570.
20.Anon (2017) Annual Report on Zoonoses in Denmark 2016, National Food Institute, Technical University of Denmark.
21.Anon (2019) Annual Report on Zoonoses in Denmark 2018, National food Institute, Technical University of Denmark.
22.Voldstedlund, M, Haarh, M and Mølbak, K and The MiBa Board of Representatives (2014) The Danish Microbiology Database (MiBa) 2010 to 2013. EuroSurveillance 19, 20667.
23.Pedersen, CB (2011) The Danish civil registration system. Scandinavian Journal of Public Health 39(suppl. 7), 2225. http://dx.doi.org/10.1177/1403494810387965.
24.Danmarks statistic. StatBank database. Available at https://www.dst.dk/en (Accessed 19 July 2019).
25.Corcoran, MS, Van Well, GT and Van Loo, IH (2014) Diagnosis of viral gastroenteritis in children: interpretation of real-time PCR results and relation to clinical symptoms. European Journal of Clinical Microbiology & Infectious Diseases 33, 16631673. Published online: 16 May 2014.
26.Glass, RI et al. (2009) Norovirus gastroenteritis. The New England Journal of Medicine 361, 17761785. doi: 10.1056/NEJMra0804575.
27.Vinje, J (2015) Advances in laboratory methods for detection and typing of norovirus. Journal of Clinical Microbiology 53, 373381. Published online: 29 October 2009.
28.Rooney, BL et al. (2014) Detection of circulating norovirus genotypes: hitting a moving target. Virology Journal 11, 129.
29.Ahmed, SM et al. (2013) A systematic review and meta-analysis of the global seasonality of norovirus. PLoS ONE 8(10). doi: https://doi.org/10.1371/journal.pone.0075922.
30.Van Beek, J et al. (2018) Molecular surveillance of norovirus, 2005–2016: an epidemiological analysis of data collected from Noronet network. Lancet Infectious Diseases 18, 545553. Published online: 26 January 2018.
31.Chan, MCW et al. (2017) Global spread of norovirus GII.17 Kawasaki 308, 2014–2016. Emerging Infectious Diseases 23, 8.
32.Dam Rasmussen, L et al. (2016) Molecular evidence of oysters as vehicle of norovirus GII.P17-GII.17. Emerging Infectious Diseases 22, 2024.
33.Frank, KT et al. (2014) Norovirus epidemiology in community and health care settings and association with patient age, Denmark. Emerging Infectious Diseases 20, 11231131.
34.Frank, KT et al. (2015) Norovirus genotypes in hospital settings: differences between nosocomial and community-acquired infections. The Journal of Infectious Diseases 212, 881888. Published online: 15 September 2015.

Keywords

Detection of norovirus infections in Denmark, 2011–2018

  • M. R. Korcinska (a1) (a2), K. Dalsgaard Bjerre (a1), L. Dam Rasmussen (a3), E. Tvenstrup Jensen (a1), T. K. Fischer (a4) (a5), A. Barrasa (a2) (a6) and S. Ethelberg (a1) (a7)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.